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Abstract 
Unsupervised learning in general and clustering in particular, are the starting point of 

many exploratory studies, in order to find interesting patterns with no prior knowledge 

in new data. Big data sets become more common   in many fields and the search for 

novel tools to extract and store knowledge is intensified. 

We try to find new insights on two existing large data sets by using the quantum 

clustering method. On financial data, our method shows clustering of stocks to 

different groups, with correlation to their industry sector. Also, we show that by 

looking at the market as a time series we can distinguish between different states 

which the market shifts between. 

On a catalog of earthquakes in the Eastern Mediterranean Region and the Dead Sea 

Fault, we demonstrate that earthquakes can be meaningfully clustered with respect to 

geophysics features alone. Correlating these clusters with time and location 

information then leads to novel insights regarding the characteristics of major faults. 

We conclude that our methodology has been validated, and our unsupervised analysis 

has led to a new perspective and understanding of this complex data set. 

On the technical side we implemented three new applications. First, a new 

preprocessing step for  quantum clustering , which leads to reduction in the algorithm 

complexity and thus running it on big data sets is feasible. Second, a newer version of 

COMPACT, with implementation of support vector clustering, and few enhancements 

for the quantum clustering algorithm. Third, an implementation of quantum clustering 

in Java.  
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Chapter 1 

Introduction 

Several authors in different fields have shown that by using clustering techniques, one 

can extract important and previously unknown understanding of the data in question.  

Samples of this might include work done on gene expression data1, social network 

analysis2, medical imaging3, chemistry4, and many other diversified fields of interest.  

Quantum Clustering5  and Dynamic Quantum Clustering6 are two clustering methods 

which were inspired by quantum mechanics. Both of these methods showed great 

promise in exposing hidden patterns of data structures. 

In this work we will perform exploratory search using these methods on new data sets, 

trying to find new conclusions on the related topics. We will also suggest a new way 

allowing the QC method to tackle big-data problems. 

1.1 Background 

1.1.1 Pattern recognition: 

From the dawn of life on earth, all creatures with sense organs depend deeply on the 

ability to analyze quickly data that comes from their sense organs for survival, 

causing them to evolve highly sophisticated neural and cognitive systems for such 

pattern recognition tasks – taking in raw data and performing an action depending on 

the category of the recognized pattern. 

The ease of which humans can identify a face in a crowd, understand poor 

handwriting, recognize words over a bad telephone connection or sense danger by a 

faint smell, sometimes falsely lead us to think that such actions are "easy"7, and might 

be easily reproduced by machines. 

 In order to understand the problem of creating a computer program which can 

recognize patterns, let's think of a real-world problem – a system for handwritten zip 

code recognition8. Using constraints, like that the digits are written in a specific place 

on the envelope and with fixed space between them, simplifies the problem, but the 

bigger problem remains of assigning the correct digit (0-9) to each written character. 

If the computer had a base of all handwritings in the world this would be a simple 
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exercise, the program would only need to scan through all of the possible images and 

match the digit to the exact image. This of course is not realistic; assuming every 

literate person agrees to provide such a sample, the resulting data-base would be large 

enough to make querying it impossibly long, and of course there is no guarantee that 

one's handwriting stays constant over time.  

Instead, the system should be able to "learn" to recognize handwriting, by mimicking 

humans' ability to deduce the right digit based on prior knowledge. This means that 

we do not provide the system set of rules to differentiate between digits, rather we 

give a set of examples with their correct labels, and let the system find the rules by 

itself. Thus, the system might return a different set of rules based on different example 

sets.  

1.1.2 Supervised Learning: 

The problem described above is part of a subfield of machine learning called 

Supervised Learning.9 In these cases the algorithm has prior knowledge about the 

problem in the form of a training set. The training set consist of examples composed 

of both the features of the problem (each sample has one or more different features), 

and a label assigning each sample to the right class. This means that the system knows 

both the number of different classes, which can be two or more, and the correct 

assignment of each sample. 

The training data is given to the learning algorithm which produces a classifier. A 

classifier is a function that maps between a new sample and a class. In some cases the 

classifier can also return an indecisive answer saying the result may not be determined 

in a good confidence level. 

This means that after using the training set to build the classifier it is time to use a real 

data-set with an unknown classification, and compare the results from the classifier to 

the data-set’s samples. 

Techniques like this are used in a variety of different fields; we have already 

mentioned the use in computer vision to recognize handwriting or computer prints. 

Another important application is to diagnose diseases; in this case the features might 

be different patient physical parameters and the label will be if he is sick or healthy. A 

more common case is to perform DNA tests on a tumor and based on those figure out 
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if the tumor is malignant or not. Other applications may be found  in speech 

recognition, on-line marketing etc. 

1.1.3 Unsupervised Learning: 

The key assumption in the supervised learning algorithms is that a known training set 

is present. Such a training set is not always present, and sometimes the prior 

knowledge is enforced by the expert and is not really manifested in the data. To tackle 

those problems the unsupervised learning techniques assume no labeling knowledge 

on the input data, and just try to find the natural groupings of the input patterns.  

The result of the fact that there is no prior knowledge is that there is no need for a 

training set. Rather the algorithm unravels the underlying similarities and groups 

“similar” vectors together. 

 

1.1.4 Clustering 

Clustering is an unsupervised learning technique; it is the process of dividing a set of 

data into "natural" groups. The input to a clustering algorithm is a set of N data points 

xi in d dimensional space. The output is a proposed classification of the data points 

into groups. 

In some cases the number of desirable clusters is given as a constraint to the 

algorithm, in others there are parameters that affect the number of clusters and their 

character. Clustering algorithms can be either plain classification or hierarchical. In 

hierarchical algorithms the output is a dendogram which is a tree that describes the 

classification of the data into groups and the breakdown of these groups into further 

smaller groups. 

Examples of well-known clustering algorithms are K-means10, hierarchical 

clustering11, SOM12 and mean-shift clustering13. 

 
1.2 Purpose of research 

In information age, when new data sets of various fields emerge in an overwhelming 

speed, techniques able to handle large data sets should be developed. We apply 



7 

 

clustering techniques to large  data, trying to find hidden details which might be 

exposed only with this kind of analysis. We also suggest a new  step in the Quantum 

Clustering algorithm, to enable it to work on big data problems 

 

1.3 Thesis organization 

The rest of the thesis is organized as follows: chapter 2 describes the algorithms and 

formalism we use to analyze the data, singular value decomposition formalism14, the 

support vector clustering15, quantum clustering5, approximate quantum clustering and 

dynamic quantum clustering6 algorithms.  

In chapter 3 we analyze a financial data set using our algorithms. 

In chapter 4 we analyze the complete Israel seismic network catalog, containing all 

the earthquakes which took place in the  region since 1990. 

In chapter 5 we compare the quantum clustering algorithm5 with the support vector 

clustering15 one, and present the use of the approximate quantum clustering algorithm 

on real data. 

Part of chapter 2 and chapter 4 are based on a manuscript that has been submitted for 

publication (Shaked, Weinstein, Hofstetter, Horn)   
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Chapter 2 

Algorithms and related formalism 

2.1 Singular Value Decomposition (SVD)14: 

Our study concerns different types of � × � data matrices X with rank � =
min	(�, �). The equation for the singular value decomposition of X is as follows: 


 = ���� 

Where S is a (non-square) diagonal matrix, and U, V are orthogonal matrices. 

This can be re-written in a sum representation of k=min(m,n) unitary matrices of rank 

1 


 =��������
�

�
 

Ordering the non-zero elements of � in descending order, and taking only the first � 

values give us 


� = ����� =��������
�

�
 

Which is the best approximation of rank � to 
, i.e. it leads to the minimal sum of 

square deviations 

� =���
�� − ���� 
!

�

"

�
 

Once SVD is applied to a given matrix	
, two spaces dual to each other emerge. 

The matrix � has orthogonal columns that serve as axes for representing the rows of 

�, while the matrix �� has orthogonal columns that serve as axes for representing all 

rows of �. Truncating these representations to � dimensions leaves the truncated rows 

of � and the truncated columns of ��with non-equal norm. This leads to many 

vectors accumulating near the origin, which then leads to problems in the clustering 
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algorithm that is applied on these spaces. Therefore, we project each vector onto a 

unit sphere in �-space (each vector is rescaled to a unit vector in �-space)  

 

2.2 Support Vector Clustering (SVC) 15: 

Support Vector Clustering (SVC) is a clustering method using the approach of support 

vector machine16 (a classification approach). In the algorithm, data points are mapped 

from the data space to a high dimensional feature space using a Gaussian kernel. In 

this feature space, the smallest sphere enclosing the data is looked for. This sphere is 

then mapped back to the data space, forming a set of contours which are interpreted as 

cluster boundaries. As the width parameter of the Gaussian kernel is decreased, the 

number of disconnected contours in data space increases, leading to an increasing 

number of clusters. Outliers can be dealt with by using the soft margin approach. With 

this approach the sphere in the feature space is allowed to not enclose all data points, 

leaving only the cluster cores. In this way overlapping clusters can also be dealt with. 

The calculation uses the SVM mechanism with the following soft margin constraint 	
‖Φ(%&) − a‖ ≤ R + ξ&	∀i 

Using the Gaussian kernel on the dual problem introduces the following Lagrangian   

ℒ. =��e01‖23023‖4� β&
6

&78
−�β&β9e01:2302;:4

6

&,9
= 	1 −�β&β9e01:2302;:4

6

&,9
 

subject	to		0 ≤ β& ≤ C, �β&
6

&78
= 1, �β&y&

6

&78
= a 

Solving this set of equations –one derives the distance from any point to the hyper-

sphere center 

G = ‖Φ(%) − H‖  
Using the Gaussian kernel gives 

G = 1 − 2�J�e01:K0KL:4
!

�
+�J�J�e01:KM0KL:4

!

�,�
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Using any one of the support vectors gives the radius of this hyper-sphere.  

So far there was no differentiation between points that belong to different clusters. A 

geometric approach involves the radius calculation for each point that is used. Given 

any two data points which belong to different clusters, any path that connects them 

must exit from the sphere in feature space.  To calculate the relation between any two 

points, we sample the shortest path between them (around 20 points).  

 

Figure 1 - A- points in data space, green represent support vectors,  and shortest paths between 
them. B – the shortest paths in feature space. Paths connecting different clusters exit the hyper-

sphere. 

An adjacency matrix can be defined as	
A�,� = O1, PQ	QR�	HSS	T	R�	UℎW	SX�W	�WY�W�U	ZR��WZUX�Y	%�		H�[	%� 	G(T) ≤ G0, Otherwise   

Clusters are now defined as the connected components of the graph induced by A.  

The outliers are not classified by this procedure; after finding the cluster centers, they 

can be assigned to the closest cluster. 

This approach of building the adjacency matrix gives the exact solution. But it 

becomes infeasible when dealing with "big data" problems (> ~104 data points), with a 

large number of dimensions. 

For these situations, we develop a  Heuristic SVC approach . We first consider a 

significant amount of points to be  outliers. SVC is being used to separate the data into 

outliers and core points. The latter have to be grouped into  ‘core clusters’ which 

should be quite separate from each other making. In order to avoid the costly 
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adjacency matrix pairings of points, we use the advantage of large separations and 

employ   the K-means10 algorithm to the core points. Since there is no notion of the 

"real" number of clusters, we use a technique named Silhouette17 which attempts to 

determine it. 

The technique provides a succinct graphical representation of how well each object 

lies within its cluster. 

Let us define a(i) = average Euclidian distance to all other nodes within the same core 

cluster. 

b(i) = minimum d(i,Cj) - the minimum Euclidian distance to other clusters (the nearest 

cluster is chosen). 

From these two numbers we can define: 

s(i) = b(i) − a(i)max	{a(i), b(i)} 
Finally, averaging on all s(i) gives us the dissimilarity value for this choice of cluster 

numbers. Comparing s(i) to different cluster arrangements will give the best one. 

Since we assume that the cluster centers are relatively distinct, the best silhouette 

score will be defined as the "correct" number of clusters. 

The algorithm will be: 

1) Use the SVC algorithm to get the core points 

2) For k = 2 to N (the number of max clusters to check) 

2.1) run Kmeans with k as the number of clusters 

2.2) check the silhouette value of the Kmeans solution 

3) Find the highest silhouette value and use this to define the core clusters 

4) Go over all outliers o(i) 

4.1) find nearest core point c(i) 

4.2) assign o(i) to the same cluster as c(i)     

 

 

 



12 

 

2.3 Quantum Clustering (QC)5: 

The main clustering algorithm we are going to use is the Quantum Clustering (QC) 

algorithm originally suggested by Horn and Gottlieb5.  

It starts by assigning a Gaussian, ψi, with width σ to each data points in the Euclidean 

SVD coordinates.  

Ψ(x�) =�e0�dM0dL�
4

 e4
f

978
 

Then constructing the sum of the individual Gaussian function to obtain what is 

known as the Parzen window estimator18.  

Ψ =� Ψ(%�)�  

Finally define the potential function associated with the Parzen function to be 

� = g 2 ∇ ΨΨ + i 

where 

i = −�X� g 2 ∇ ΨΨ  

� has the unique property that it serves as the potential function of the Schrödinger 

equation 

jΨ = k−g 2 ∇ + �(%)lm = iΨ 

for which Ψ is the ground state. In this equation, the potential function V(x) can be 

regarded as the source of attraction, whereas the first Lagrangian term is the source of 

diffusion, governed by the parameter g. (In the earthquake section a potential of this 

kind will be shown.). The QC looks for minima in V, since these correspond to 

regions where the density of the data is a local maximum, thus define cluster centers. 

In Fig. 2 we present examples of two Gaussians centered at 0 and A and having 

width=1, and their corresponding potentials. It is clear that the potential can 
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where m is the number of iterations of the gradient descent. 

2.4 Approximate Quantum Clustering (AQC): 

As the field of machine learning developed and tools to extract data sets improved, it 

is no longer rare to find data sets with more than 106 samples and features. As 

mentioned before with the help of SVD a reduction in feature space is possible but 

because the complexity of the QC algorithm is of order p(s ), it is still  infeasible to 

run on big data sets. 

In order to improve the complexity we first need to analyze a QC step. In each step it 

is required to calculate the effect of each data-point on every other moving point.  

Since each data-point is represented by a Gaussian, all of the points taken together 

form an over-complete set. If we could find a smaller set of Gaussians with different 

coefficients that might form Ψt  which will approximate Ψ, the complexity of the AQC 

will be of order p(u ∙ s)	, where u is the number of Gaussians in this reduced set. 

To calculate this set we will employ the bra-ket notation 

Ψ(x) = 1(2πg )w  ⁄ �W0(d0yM)4 z4
{

&78
=�|%|X~

�
 

where |X~ is the set of original Gaussians and [ is the number of dimensions. We 

introduce another set |�~	 which will serve as the approximate set. 

We define the matrix s as 

s�� = |�|J~ 
And the projection operator 

� =�|�~(s08)��|J|
��

 

This operator obeys � = � and projects the original set of vectors |X~ onto the 

approximated set |�~ 
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Now we use this projection operator to get Ψt  

Ψt =�|%|�|X~
�

=�|%|�~
���

(s08)��|J|X~ 

With the definition of 

��� =�(s08)��|J|X~
�

 

�� =����
�

 

Ψt  can be written as: 

Ψt =�|%|�~
�

�� 

From Ψt  we can calculate ��as in the QC algorithm. 

The coefficients �� are calculated only once, as a precursor to the gradient descent 

phase. 

Of course the choice of  |�~ has crucial importance, since picking a set which does not 

span the data space correctly will harm the approximation. In order to get a reasonable 

choice of Gaussian base, the following heuristic is employed 

1. Find min-max of all of the dimensions 

2. Divide the space into voxels 

3. Go over all voxels 

3.1. If there is one or more data points in the voxel take one 

3.2. Else do nothing 

The size of the voxels is left for the user to choose, depending on how rough does he 

want the approximation to be, with respect to each dimension range and σ chosen. 

Usually, since SVD and renormalization is performed, each dimension is bound in the 

�−1. .1� range, therefore dividing each dimension into 10 voxels works reasonably 

well. 
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2.5 Dynamic Quantum Clustering (DQC)6: 

Dynamic Quantum Clustering (DQC) is a method which is based on QC but replaces 

the gradient-descet dynamics with that of a time-dependent Schrödinger equation. It 

lets each ψi develop for a short while under the Schrödinger equation, and then 

constructs a new corresponding ψi and proceeds for many such steps using the 

original V, thus this dynamics may be regarded as the Schrödinger equation analog of 

gradient descent. 

In this formalism each data point will be viewed as the expectation value of the 

position operator in a Gaussian wave function ψ&(x��) = Ce0(d��0d��3)4  e4⁄  where C is the 

appropriate normalization factor. 

Thus the expectation value of the operator	x��, is simply the coordinates of the original 

data point 

x��& = |ψ&|x��|ψ&~ = �dx��ψ&∗(x��)x��ψ&(x��)	
Now the time evaluation of each state ψ&(x��) can be determined by the time-dependent 

Schrödinger equation 

X �ψ&(x��, U)�U = jψ&(x��, U) = �− ∇ 2� + �(x��)�ψ&(x��, U) 
where V(x��)	 is the potential function and m is an arbitrarily chosen mass parameter. It 

allows for tunneling between near-by valleys of V, thus connecting between data 

points in nearly degenerate potential minima.  
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Chapter 3* 

Financial data 

3.1 Data: 

We analyze all 440 stock data of the Standard and Poor’s (S & P) 500 list that were 

recorded daily throughout the period January 1st, 2000 – February 24th, 2011. The 

total number of active trading days was 2803. Notably this includes the crises of 2002 

and of 2008 

3.2 Analysis: 

We use this data to examine various features of the QC algorithm and to demonstrate 

how we can extract information from data matrices. 

We start by building the daily relative return matrix R (440X2803).  Submitting R to 

SVD we truncate it to 10 dimensions, and project the data onto the unit sphere in the 

10 dimensional SVD space. The QC algorithm, when applied on this matrix 

(440X10),   results in 9 clusters. We will refer to these clusters as sections. Half of 

them have high overlaps with the 10 sectors into which these stocks are traditionally 

classified (one of the sectors – Diversified - has only one member). 

Figure 3 displays the correspondence between the financial sectors (ordered 

sequentially on the x-axis) and the nine sections (on the y-axis). The ten sectors are: 1. 

Basic Materials,  2.  Communications, 3.Consumer, Cyclical, 4. Consumer, Non-

cyclical, 5. Energy,  6. Diversified, 7. Financial, 8. Industrial, 9. Technology,   

10. Utilities. 

 

 

 

 

 

 

 

                                                            
* Based on joint work with Erez Persi, Marvin Weinstein and David Horn (unpublished) 

Figure 3 - Correspondence between stock classifications into nine financial 
sectors, ordered along the x-axis, and their QC clustering into nine clusters 

(sections). Each short vertical bar represents one stock 
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It can be seen that this kind of clustering finds that some sectors have high correlation 

between the stocks associate to them (like the Utilities or Financial sectors), but in 

some cases there exists mixing between sectors which leads to cross sectors 

correlations. 

Performing a similar exercise on a matrix composed of daily data of weekly returns, 

we find, for the same sigma, only 6 clusters as presented in figure 4. Moreover, these 

clusters group some sectors together; in other words, the mixing of basic materials 

and industrials observed in cluster 3 of figure 3 becomes a much more spread 

phenomenon. Evidently this means that the behavior of daily returns, that 

characterizes some sectors, washes out by correlating related sectors within a few 

days. 

 

  

 

 

Next we try to look at this problem the other way around, trying to cluster the 

temporal domain into epochs. This requires considering the 2803 days as individual 

variables. Reducing once again R into ten-dimensional SVD space, and projecting the 

points onto a unit sphere, the DQC algorithm finds two major clusters that contain 

days from all along the temporal domain, and many other clusters with scarcer 

content. These results do not suggest any reasonable interpretation other than that R is 

a matrix of almost random fluctuations with zero average; hence it does not allow for 

simple clustering boundaries to appear in the 440-dimensional stock-space (or within 

its 10-dimensional SVD reduction). 

In order to find temporal clusters we need to find a different representation which will 

not fluctuate too much. A suitable choice is the matrix P of daily stock prices (relative 

to the starting price on Jan 1st, 2000). Since the time series of each stock has relatively 

small fluctuations, it is possible for (close-by) time-points to exhibit similar vectors 

within the 440 stock-space, and thus fit into the same temporal cluster. 

Figure 4 - Correspondence between stock classifications on a weekly 
return into six financial sectors 
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Figure  5  - Temporal DQC clustering of the matrix P into 17 epochs, represented by bars. For 
comparison we plot the S&P 500 index for the same days, just to serve as an indicator of the 

known market behavior with its crises of 2002 and 2008. 

The results, displayed in Fig. 5, show the existence of many clusters for the second 

half of the studied period (including the 2008 crisis), but only three epochs during the 

first five years (with only one covering the 2002 crisis). Each temporal cluster has its 

unique characteristics in stock prices. One way of displaying this property is by 

plotting the daily prices of stock averaged over different sectors. This is displayed in 

Fig. 6 on a 3-d plot spanned by three dominant sectors. The 17 epochs are 

distinguished by different colors. 

 

Figure 6 - Average daily prices for three sectors (1- Basic Materials, 5 - Energy, 7 - Financial) are 
plotted in a space spanned by these sectors in two different orientations. The data are seen to 

cluster into different epochs, distinguished by the different colors 


