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Abstract

Unsupervised learning in general and clusteringarticular, are the starting point of
many exploratory studies, in order to find inteirggpatterns with no prior knowledge
in new data. Big data sets become more commomainy fields and the search for

novel tools to extract and store knowledge is isifiead.

We try to find new insights on two existing largatal sets by using the quantum
clustering method. On financial data, our methodwsh clustering of stocks to
different groups, with correlation to their indystsector. Also, we show that by
looking at the market as a time series we canngjgish between different states

which the market shifts between.

On a catalog of earthquakes in the Eastern Meditean Region and the Dead Sea
Fault, we demonstrate that earthquakes can be ngdalty clustered with respect to
geophysics features alone. Correlating these chkisteith time and location
information then leads to novel insights regardimg characteristics of major faults.
We conclude that our methodology has been validaed our unsupervised analysis

has led to a new perspective and understanding€omplex data set.

On the technical side we implemented three new iegimns. First, a new
preprocessing step for quantum clustering , wheells to reduction in the algorithm
complexity and thus running it on big data sete#sible. Second, a newer version of
COMPACT, with implementation of support vector ¢ering, and few enhancements
for the quantum clustering algorithm. Third, an lempentation of quantum clustering

in Java.



Chapter 1

Introduction

Several authors in different fields have shown byatising clustering techniques, one
can extract important and previously unknown undeding of the data in question.
Samples of this might include work done on generesgion data social network

analysié, medical imaging) chemistry, and many other diversified fields of interest.

Quantum Clusterimg and Dynamic Quantum Clusterfhare two clustering methods
which were inspired by quantum mechanics. Bothhelsé methods showed great

promise in exposing hidden patterns of data strastu

In this work we will perform exploratory searchngithese methods on new data sets,
trying to find new conclusions on the related tgpid/e will also suggest a new way
allowing the QC method to tackle big-data problems.

1.1 Background
1.1.1 Pattern recognition:

From the dawn of life on earth, all creatures veiimse organs depend deeply on the
ability to analyze quickly data that comes fromithgense organs for survival,
causing them to evolve highly sophisticated nearad cognitive systems for such
pattern recognition tasks — taking in raw data pedorming an action depending on

the category of the recognized pattern.

The ease of which humans can identify a face inr@ava, understand poor
handwriting, recognize words over a bad telephamaection or sense danger by a
faint smell, sometimes falsely lead us to think thech actions are "easyand might
be easily reproduced by machines.

In order to understand the problem of creatingoanpmuter program which can
recognize patterns, let's think of a real-worldhpeon — a system for handwritten zip
code recognitioh Using constraints, like that the digits are veritin a specific place
on the envelope and with fixed space between tlsemplifies the problem, but the
bigger problem remains of assigning the correcit §@39) to each written character.

If the computer had a base of all handwritingshie world this would be a simple



exercise, the program would only need to scan tirall of the possible images and
match the digit to the exact image. This of couss@ot realistic; assuming every
literate person agrees to provide such a sammeagegulting data-base would be large
enough to make querying it impossibly long, anadaifirse there is no guarantee that

one's handwriting stays constant over time.

Instead, the system should be able to "learn" ¢ogeize handwriting, by mimicking

humans' ability to deduce the right digit basedpaor knowledge. This means that
we do not provide the system set of rules to diffidiate between digits, rather we
give a set of examples with their correct labets] ket the system find the rules by
itself. Thus, the system might return a differegttaf rules based on different example

sets.
1.1.2 Supervised Learning:

The problem described above is part of a subfidldmachine learning called
Supervised Learning.® In these cases the algorithm has prior knowledymiathe
problem in the form of a training set. The trainsgf consist of examples composed
of both thefeatures of the problem (each sample has one or more diffefleatures),
and a label assigning each sample to the righs cldgs means that the system knows
both the number of different classes, which cantie or more, and the correct

assignment of each sample.

The training data is given to the learning algantkwhich produces alassifier. A
classifier is a function that maps between a nawpéaand a class. In some cases the
classifier can also return an indecisive answeinggayne result may not be determined

in a good confidence level.

This means that after using the training set tédithie classifier it is time to use a real
data-set with an unknown classification, and comphe results from the classifier to

the data-set’s samples.

Techniques like this are used in a variety of défe fields; we have already
mentioned the use in computer vision to recognaedivriting or computer prints.
Another important application is to diagnose dissai this case the features might
be different patient physical parameters and thellwill be if he is sick or healthy. A
more common case is to perform DNA tests on a tusandrbased on those figure out
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if the tumor is malignant or not. Other applicasomay be found in speech

recognition, on-line marketing etc.
1.1.3 Unsupervised Learning:

The key assumption in the supervised learning dlguos is that a known training set
is present. Such a training set is not always ptesand sometimes the prior
knowledge is enforced by the expert and is notyeaanifested in the data. To tackle
those problems the unsupervised learning techniggssme no labeling knowledge

on the input data, and just try to find the natgraupings of the input patterns.

The result of the fact that there is no prior knedge is that there is no need for a
training set. Rather the algorithm unravels theewlythg similarities and groups

“similar” vectors together.

1.1.4 Clustering

Clustering is an unsupervised learning technidus;the process of dividing a set of
data into "natural” groups. The input to a clustgralgorithm is a set of N data points
Xi in d dimensional space. The output is a proposed &ilzsin of the data points

into groups.

In some cases the number of desirable clusteigaes @s a constraint to the
algorithm, in others there are parameters thataffee number of clusters and their
character. Clustering algorithms can be eithenptéassification or hierarchical. In
hierarchical algorithms the output is a dendogramtivis a tree that describes the
classification of the data into groups and the kadean of these groups into further

smaller groups.

Examples of well-known clustering algorithms arenéand’, hierarchical
clustering’, SOM'? and mean-shift clusterifhg

1.2 Purpose of research

In information age, when new data sets of varioelsl$ emerge in an overwhelming

speed, techniques able to handle large data setddshe developed. We apply



clustering techniques to large data, trying talfimdden details which might be
exposed only with this kind of analysis. We alsggest a new step in the Quantum

Clustering algorithm, to enable it to work on batal problems

1.3 Thesis organization

The rest of the thesis is organized as followspt#ra2 describes the algorithms and
formalism we use to analyze the data, singularevdiecomposition formalistf) the
support vector clusterify quantum clusteririg approximate quantum clustering and

dynamic quantum clusterifi@lgorithms.
In chapter 3 we analyze a financial data set usingalgorithms.

In chapter 4 we analyze the complete Israel seismiwork catalog, containing all

the earthquakes which took place in the regiocesit990.

In chapter 5 we compare the quantum clusteringridhgo® with the support vector
clustering® one, and present the use of the approximate queclustering algorithm
on real data.

Part of chapter 2 and chapter 4 are based on asti@piLthat has been submitted for

publication (Shaked, Weinstein, Hofstetter, Horn)



Chapter 2

Algorithms and related formalism

2.1 Singular Value Decomposition (SVD:

Our study concerns different types of x n data matrices X with rank =

min(m, n). The equation for the singular value decomposiibX is as follows:
X=UsyT

Where S is a (non-square) diagonal matrix, and dre/orthogonal matrices.

This can be re-written in a sum representation=ohiki(m,n) unitary matrices of rank
1

k
X = Z w;s;vl
i

Ordering the non-zero elements®in descending order, and taking only the first
values give us
r
XT=Us"VT = Zuisl-viT
i
Which is the best approximation of rankio X, i.e. it leads to the minimal sum of

square deviations

m n
b= ZZ(XU ~vy)’
T

Once SVD is applied to a given matixtwo spaces dual to each other emerge.

The matrixU has orthogonal columns that serve as axes foesepting the rows of
U, while the matrixV'T has orthogonal columns that serve as axes foesepting all
rows ofl/. Truncating these representations ttimensions leaves the truncated rows
of U and the truncated columns &f with non-equal norm. This leads to many

vectors accumulating near the origin, which thead$eto problems in the clustering



algorithm that is applied on these spaces. Thexefoe project each vector onto a

unit sphere inr-space (each vector is rescaled to a unit vectoisipace)

2.2 Support Vector Clustering (SVC)™:

Support Vector Clustering (SVC) is a clustering imoek using the approach of support
vector machin® (a classification approach). In the algorithmadaints are mapped
from the data space to a high dimensional feafp@eesusing a Gaussian kernel. In
this feature space, the smallest sphere enclosenddta is looked for. This sphere is
then mapped back to the data space, forming & sentours which are interpreted as
cluster boundaries. As the width parameter of taassian kernel is decreased, the
number of disconnected contours in data spaceasess leading to an increasing
number of clusters. Outliers can be dealt with g the soft margin approach. With
this approach the sphere in the feature spacéisead to not enclose all data points,
leaving only the cluster cores. In this way ovepliag clusters can also be dealt with.

The calculation uses the SVM mechanism with thiefahg soft margin constraint
[P(x;) —all* < R* +§; Vi

Using the Gaussian kernel on the dual problem dghites the following Lagrangian

n n n
-~ 2 2 2
L= Z(e_quxi_xiuz) B — Z BiBje—QIIXi—lel =1- Z BiBje—QHXi—XJ’”
i=1 ij i

n n
subjectto 0 < B; < C, Z Bi=1, Z Biyi = a
i=1 i=1

Solving this set of equations —one derives theadst from any point to the hyper-
sphere center

R?* = |o(x) — all?

Using the Gaussian kernel gives

n n

2 2

RZ—=1—72 Z pre~allx=x;1" 4 Z B B;ealxi=xil
i Lj



Using any one of the support vectors gives theusadf this hyper-sphere.

So far there was no differentiation between pdimds belong to different clusters. A
geometric approach involves the radius calculdoreach point that is used. Given
any two data points which belong to different adust any path that connects them
must exit from the sphere in feature space. Toutatle the relation between any two

points, we sample the shortest path between thesar{d 20 points).

-
fal

Figure 1 - A- points in data space, green represestipport vectors, and shortest paths between
them. B — the shortest paths in feature space. Patltonnecting different clusters exit the hyper-
sphere.

An adjacency matrix can be defined as

_ {1, If for all y on the line segment connecting x; and x; R(y) <R
ij =

0, Otherwise
Clusters are now defined as the connected comp®oétiie graph induced by A.

The outliers are not classified by this procedafter finding the cluster centers, they

can be assigned to the closest cluster.

This approach of building the adjacency matrix gitlee exact solution. But it
becomes infeasible when dealing with "big data’bjfgms (> ~16data points), with a

large number of dimensions.

For these situations, we develop a Heuristic Spfr@ach . We first consider a
significant amount of points to be outliers. S\&being used to separate the data into
outliers and core points. The latter have to beiged into ‘core clusters’ which

should be quite separate from each other makingrder to avoid the costly
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adjacency matrix pairings of points, we use theaathge of large separations and
employ the K-meariSalgorithm to the core points. Since there is niiomoof the
"real" number of clusters, we use a technique naBikduetté’ which attempts to

determine it.

The technique provides a succinct graphical reptasen of how well each object

lies within its cluster.

Let us define a(i) = average Euclidian distancaltother nodes within the same core
cluster.

b(i) = minimum d(i,Cj) - the minimum Euclidian déstce to other clusters (the nearest
cluster is chosen).

From these two numbers we can define:

_ b)) —a(@)
~ max{a(i),b(i)}

s(i)

Finally, averaging on all s(i) gives us the disamity value for this choice of cluster

numbers. Comparing s(i) to different cluster areangnts will give the best one.

Since we assume that the cluster centers arevediatistinct, the best silhouette

score will be defined as the "correct" number oftdrs.
The algorithm will be:

1) Use the SVC algorithm to get the core points
2) For k=2 to N (the number of max clusters to check
2.1) run Kmeans with k as the number of clusters
2.2) check the silhouette value of the Kmeans swiut
3) Find the highest silhouette value and use thiefmd the core clusters
4) Go over all outliers o(i)
4.1) find nearest core point c(i)
4.2) assign o(i) to the same cluster as c(i)

11



2.3 Quantum Clustering (QCY:
The main clustering algorithm we are going to us¢he Quantum Clustering (QC)

algorithm originally suggested by Horn and Gottlieb

It starts by assigning a Gaussiaf,with width ¢ to each data points in the Euclidean
SVD coordinates.

N 2
~(xi—x;)

Y(x;) = 2 e 202

=1

Then constructing the sum of the individual Gausdianction to obtain what is

known as the Parzen window estimator

w = Z_‘P(xl-)

Finally define the potential function associatethvwthe Parzen function to be

v=2T%
T2y
where
. o ViY
= mlnz Wy

V' has the unique property that it serves as thenpatdunction of the Schrédinger

equation
0.2
HY = —7V2 + V(X) Y =E¥

for whichW is the ground state. In this equation, the paéfiinction V(x) can be
regarded as the source of attraction, whereasrgtd_fgrangian term is the source of
diffusion, governed by the parameter(In the earthquake section a potential of this
kind will be shown.). The QC looks for minima in $nce these correspond to

regions where the density of the data is a locadimam, thus define cluster centers.

In Fig. 2 we present examples of two Gaussiansecetitat 0 and A and having

width=1, and their corresponding potentials. It dear that the potential can
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distinguish between overlapping Gaussians, anatensifies the differences betwe

them

A=0.016080402 A=1334673367

‘ 1 S ‘ i

¥ b Yy ' ‘ _‘|'

Figure 2 - a function of two Gaussians (green) and its poterati (red).
A represents the distance between the

o is a parameter of QC which has to be chosen byuieg to satisfy subjecti

criteria, such as limiting oneself to relativelyaimumbers of clusrs

Once V is constructed we can use the gradient desdgorithn'®, where the powe
moving the dat-points is the classical force that is giver—VV. This leads the de-

points to follow the dynamics
yi(t + At) = y;(£) = n(®)VV (y; (1))
Date-points that descend to the same minimum are dectaree in the same clust

The time complexity of calculating the potential ¢tion at a certain point O(r - N)
where r is the number of truncated dimensions #fieiSVD, and N is the number
date-points, since the potential at each point is ationoof all original dati points. A
complete step of the gradient descent is of cO(r - N?) because all of thmoving

points need to be processed. Therefore the compétalation is of ord:
O(m-r-N?)

13



where m is the number of iterations of the gradésscent.

2.4 Approximate Quantum Clustering (AQC):

As the field of machine learning developed andgdolextract data sets improved, it
is no longer rare to find data sets with more ti#f samples and features. As
mentioned before with the help of SVD a reductiorféature space is possible but
because the complexity of the QC algorithm is afeot? (N?), it is still infeasible to

run on big data sets.

In order to improve the complexity we first needattalyze a QC step. In each step it
is required to calculate the effect of each datatpon every other moving point.
Since each data-point is represented by a Gausdiaof the points taken together
form an over-complete set. If we could find a serafiet of Gaussians with different
coefficients that might forrf¥ which will approximate¥, the complexity of the AQC

will be of orderO(c - N) , wherec is the number of Gaussians in this reduced set.

To calculate this set we will employ the bra-ketation

1 _(x=xy)?
Y(x) = Wz 202 Z(Xh)

where|i) is the set of original Gaussians a#ids the number of dimensions. We

introduce another s¢t) which will serve as the approximate set.

We define the matri¥y/ as
Ngp = (a]B)

And the projection operator

P = )N g6l
ap

This operator obey$? = P and projects the original set of vectdiy onto the

approximated sdtr)

14



Now we use this projection operator to get
T = @IPli) = ) (xla) (V- DglB1)
i iaf

With the definition of

Cai = ) (N (B10)
B

Co = Z Cai
L

P can be written as:

P = Z(xla) C,

From® we can calculat&as in the QC algorithm.

The coefficientsC, are calculated only once, as a precursor to tadignt descent

phase.

Of course the choice ofr) has crucial importance, since picking a set wkicés not
span the data space correctly will harm the appration. In order to get a reasonable

choice of Gaussian base, the following heuristengployed

1. Find min-max of all of the dimensions

2. Divide the space into voxels

3. Go over all voxels
3.1.If there is one or more data points in the voxkétane
3.2.Else do nothing

The size of the voxels is left for the user to dealepending on how rough does he
want the approximation to be, with respect to edintension range anslchosen.
Usually, since SVD and renormalization is perforiregich dimension is bound in the
[—1..1] range, therefore dividing each dimension into @®els works reasonably

well.

15



2.5 Dynamic Quantum Clustering (DQCY:

Dynamic Quantum Clustering (DQC) is a method whichased on QC but replaces
the gradient-descet dynamics with that of a timpetielent Schrodinger equation. It
lets eachyi develop for a short while under the Schrddinggquation, and then
constructs a new corresponding and proceeds for many such steps using the
original V, thus this dynamics may be regardedhasSchrédinger equation analog of

gradient descent.

In this formalism each data point will be viewed the expectation value of the

position operator in a Gaussian wave funcigfi) = Ce~&-%*/20* where C is the

appropriate normalization factor.

Thus the expectation value of the operatds simply the coordinates of the original

data point
% = Wildl) = [ AR )
Now the time evaluation of each stgtgXx) can be determined by the time-dependent

Schrédinger equation

. a‘l"l(i t)
—— =

Lo [ v S .
E T HY; (X, t) = I—% + V(X)l Ui (X, t)

whereV(X) is the potential function and m is an arbitradhposen mass parameter. It
allows for tunneling between near-by valleys of tiius connecting between data

points in nearly degenerate potential minima.

16



Chapter 3

Financial data

3.1 Data:

We analyze all 440 stock data of the Standard ao'$ (S & P) 500 list that were
recorded daily throughout the period Januaty 2000 — February 24 2011. The
total number of active trading days was 2803. Ngt#bs includes the crises of 2002
and of 2008

3.2 Analysis:

We use this data to examine various features oQ@ealgorithm and to demonstrate

how we can extract information from data matrices.

We start by building the daily relative return nmatR (440X2803). Submitting R to
SVD we truncate it to 10 dimensions, and projeetdhata onto the unit sphere in the
10 dimensional SVD space. The QC algorithm, whepliegp on this matrix
(440X10), results in 9 clusters. We will refertteese clusters asections Half of
them have high overlaps with the §€ctorsinto which these stocks are traditionally
classified (one of the sectors — Diversified - baly one member).

Figure 3 displays the correspondence between thandial sectors (ordered

sequentially on the x-axis) and the nine sectionstlie y-axis). The ten sectors are: 1.
Basic Materials, 2. Communications, 3.Consumeygli€al, 4. Consumer, Non-

cyclical, 5. Energy, 6. Diversified, 7. Financia#8, Industrial, 9. Technology,

10. Utilities.

|IIIIIII I|IIIII|IIIIII" II |11 I;IIIIFIIF | III-IIIIIIIIIII

I Illl’lll (] ] #VFI HIIM [ Iillll wldwﬁ

[ T = T SO L

(LA ! P I !
50 100 150 200 240 3[][] 50 400

Figure 3 - Correspondence between stock classificatis into nine financial
sectors, ordered along the x-axis, and their QC ctering into nine clusters
(sections). Each short vertical bar represents orgock

" Based on joint work with Erez Persi, Marvin Weinstein and David Horn (unpublished)
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It can be seen that this kind of clustering finlst tsome sectors have high correlation
between the stocks associate to them (like thatigsilor Financial sectors), but in
some cases there exists mixing between sectorshwieads to cross sectors

correlations.

Performing a similar exercise on a matrix composkdaily data of weekly returns,
we find, for the same sigma, only 6 clusters asemted in figure 4. Moreover, these
clusters group some sectors together; in other sydtee mixing of basic materials
and industrials observed in cluster 3 of figure &dmes a much more spread
phenomenon. Evidently this means that the behawbrdaily returns, that
characterizes some sectors, washes out by conglegiated sectors within a few

days.

e A w1

[ . LI

50 100 15[] 2[][] 25[] 3[][] 35[] 400

[=3]
T

Figure 4 - Correspondence between stock classificatis on a weekly
return into six financial sectors

Next we try to look at this problem the other wayumd, trying to cluster the
temporal domain int@pochs This requires considering the 2803 days as iddali
variables. Reducing once again R into ten-dimergi8WVD space, and projecting the
points onto a unit sphere, the DQC algorithm fibgd® major clusters that contain
days from all along the temporal domain, and mather clusters with scarcer
content. These results do not suggest any reasombipretation other than that R is
a matrix of almost random fluctuations with zer@mage; hence it does not allow for
simple clustering boundaries to appear in the 4d@edsional stock-space (or within

its 10-dimensional SVD reduction).

In order to find temporal clusters we need to ndifferent representation which will
not fluctuate too much. A suitable choice is thdrird@ of daily stock prices (relative
to the starting price on Jafi,22000). Since the time series of each stock Hatvely

small fluctuations, it is possible for (close-byné-points to exhibit similar vectors

within the 440 stock-space, and thus fit into thme temporal cluster.

18



+ Clusters
12 S&P 500, daily normalized return * - —16

—{10

L L
04
0 600 1000 1600 2000 2500 3000
Time [days]

Figure5 - Temporal DQC clustering of the matrix P irio 17 epochs, represented by bars. For
comparison we plot the S&P 500 index for the same #sg, just to serve as an indicator of the
known market behavior with its crises of 2002 and @08.

The results, displayed in Fig. 5, show the existeocmany clusters for the second
half of the studied period (including the 2008 is)isbut only three epochs during the
first five years (with only one covering the 200&is). Each temporal cluster has its
unique characteristics in stock prices. One waydigplaying this property is by

plotting the daily prices of stock averaged ovdfedent sectors. This is displayed in
Fig. 6 on a 3-d plot spanned by three dominantosectThe 17 epochs are

distinguished by different colors.

LR Y L L L B A R BN
35 3 25 2
Sector |

Sector 5
1.5

Figure 6 - Average daily prices for three sectors (1Basic Materials, 5 - Energy, 7 - Financial) are
plotted in a space spanned by these sectors in tdifferent orientations. The data are seen to
cluster into different epochs, distinguished by thalifferent colors
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