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Abstract

The amount and variety of data in natural sciences ineapslly. Data abstraction, data
manipulation and pattern discovery techniques are of greatmeeder to deal with such large
quantities. Integration between different sources of dalaasoh major interest, as complex
relations may arise. Biology is a good example of a fiedd provides extensive, highly variable and

multi-sources data.

Extraction of patterns from data is often carried owat supervised manner by matching data to
prior knowledge (e.g. matching groups to known tags). Unsupenvéeatn extraction, on the
other hand, explores and identifies patterns inherent to thendtitaut additional prior knowledge.
The vast amount of biological data, typically lacking extemgrior knowledge, makes it difficult to
extract meaningful information. This fact provides the bfsisinsupervised data exploration and

pattern finding in biological data.
This thesis focuses on two topics that make use of unsupedasednalysis:
1. Unsupervised data mining algorithms and tools.
2. Analysis of protein families through unsupervised extractiomatifs.

The first topic includes methods for data exploration and pre-progesgpically referred to as
data mining technigues. We present a novel dimensionality redfictaework termed
unsupervised feature filtering (UFF). We apply UFF to variousbioal datasets, including cancer,
HIV and Hepatitis-C gene-expression datasets and canceyRNA expression arrays. Using the
UFF selected features for clustering enable us to reduce aaisachieve clear clusters, which
match known instance tagging, when this information is avail&alrthermore, the selected sets of
genes and microRNAs show enrichment of both related and sogpesms. Most of the top ranked
genes and microRNAs have documented relations to the ispediease while for others, these

relations are yet undetermined. These selected setthoygontain true biological meaning.

The second topic deals with deterministic sequence motifs, drig the Motif Extraction
(MEX) algorithm. We develop a method to construct a meaningfudfsthese deterministic motifs
termed Common Peptides (CPs). This set forms a framewak]ing exploration of various
protein families, revealing internal protein family clustdinding historical traces of evolutionary
events and exposing remote homology between proteins. This frameea®epplied to Olfactory
Receptors (ORs) and to the enzyme families of aminoacyht®Mthetases (aaRS). Using the CP
framework on ORs we track OR evolutionary events in vertebratvealing redundancy removal in
humans relative to other mammals, the mass losses lieghles lineage and the history of OR



families. We also point out CPs that differentiate betweater and land dwelling species and
identify their specific locations on the OR sequence.

Using the CP framework on aaRS families reveal differesttidution of aaRS families across the
different kingdoms of life. This framework also identifies Gat differentiate between the two
known classes of the aaRS families, including many unnoticpeesee motifs. Abundant CPs tend

to overlap known catalytic and binding regions.
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Chapter 1

General Introduction

1.1 Introduction

In many disciplines, data comes in many flavors and shapesapid increase of available data in
biology requires the development of techniques to control thetdegaparate the wheat from the

chaff and to arrange it in a way that is presentable.

As the data grows more complex, possibly containing inhererg aois irrelevant features,
selecting the best techniques suitable for the problem, tajltiiem together and modifying them to

answer the problem at hand are crucial.

The techniques subjected to the general term of data aploare traditionally separated into
groups, such as supervised and unsupervised learning, feddateoaeand extraction and pattern

extraction.

While supervised learning has been studied extensively, typarowed from other disciplines to
study biological datasets, unsupervised learning also playsportant, yet less studied, role in the
processing and exploration of the data. As unsupervised learmprigharily concerned with the

data itself, different solutions are often tailored gpacific data type or even to a specific data-set.

In the past years, automation of biological data extrat@snrapidly increased, introducing vast
amounts of un-annotated data-sets. One example of such biblisg@asets is expression
microarrays, measuring expression of genes, microRNAs oliqsatea certain cellular
environment. Another example is DNA and protein sequences opiawpecies. This thesis
confronts primarily these two aforementioned biological dgiag and develops novel unsupervised

solutions that enable extracting meaningful patterns from them.

1.2 Thesis outline

This thesis begins with Chapter 1, a general introduction, providomgefisurvey of the main tasks

this thesis deals with.



Following the introduction, this thesis is divided into two distinattgpaPart one is dedicated to
feature selection. It includes a short introduction to featelecson and dimensionality reduction
(chapter 2), followed by the presentation of the novel Unsupervised &ehiitering (UFF)
algorithm in chapter 3. UFF takes into account the interplaydsn different features by ranking
them according to the influence of each feature on a global functionlatad over all other
features. In chapter 4 we analyze UFF selected featuredemadbe a framework encompassing
UFF. This framework provides measures to assess the quatlity bfFF selected features, enhances

its performance and implements the entire framework asbetool.

Part two of this thesis introduces the concept of Common Pefiifes) — a semi-supervised
method that exploits the unsupervised Motif Extraction (MEX)odtlym to produce sets of
deterministic motifs from protein families. It is descdban chapter 5. Chapter 6 introduces a
specific application of the CP methodology to produce interestinghiissof vertebrate Olfactory
Receptors (ORs). Chapter 7 applies the same CP framewoak femnily of enzymes called
aminoacyl tRNA synthetases, an important building block of the COiN#slation to proteins

mechanism.

The final chapter concludes this thesis and provides a summahe giresented algorithms and

methods and some further insights.

Chapters 3, 4, 6 and 7 are based on published or submitted mpisugdtiof them are presented as

separate units, containing their own references, figuretabitel to enhance readability.



Part 1

Chapter 2

Introduction to feature selection

2.1 Introduction

An important aspect of data analysis includes dimensionalityction of the data. This can be
viewed as a preprocessing task preceding the data aralgsien as a significant part of the data
analysis itself, providing valuable insight regarding underlyiagerns in the data. According to [1-
3], dimensionality reduction objectives are to improve modebp@dnce, reduce over-fitting and
lower running time and other resources. The introduction of higlugimput technologies produces
huge-sized datasets, where dimensionality reduction is crucial

It is customary to divide dimensionality reduction methodsature extractionwhere the methods
transform all, or a part of the features to a lower dineenspace. Converselfgature selection
methods select a subset of the original features.

In many disciplines and in Biology in particular, feature @@ methods bear a significant
advantage over feature extraction methods. This advantagecaieility to attach meaning to the
selected features, connecting them to the relevant anafytsie data. In biological data-set analysis,
these features may be defined as testable biomarkers,mgdiieicost of testing the entire set of
features for each new sample (e.g. a set of genes &w aatient).

Most of the existing methods of feature selection are sigeel, i.e. selecting features that match a
predefined labeling of the samples. Unsupervised featweetsel methods are few [3, 4]. In an
analogous way to the supervised methods, unsupervised methodwidisdo 3 types, according to
where they take place: before, during or after the clusterocedure of the samples. The methods
occurring before the clustering are calfdigring methods.

Feature filtering methods are considered to be the leasthidshe three, being independent of
subsequent data analysis procedures such as the type of clusigoiittym. Most of the
unsupervised feature-filtering methods operate on a single fedtaréme, calculating some
function on the feature values for all training samples {eagure variance, maximum to minimum

ratio (fold) or entropy), ignoring the interplay between tiegs.



Chapter 3 introduces a novel Unsupervised Feature FilterirB)(lmethod, which scores features

based on relation to all other features in the datasehdforore, it provides a natural cutoff to

decide how many features to choose. Chapter 4 extends UFRiynéxg the type of features it

selects and provides a framework which enables the implenoentdtJFF as a web-tool.

2.2 References

1.

Guyon |, Elisseeff AAn Introduction to Variable and Feature Selection Journal of Machine Learning
Researct?003,3:1157--1182.

Saeys Y, Inza |, Larrafiagareview of feature selection technigues in bioinfionatics. Bioinformatics
2007,23(19):2507-2517.

Liu H, Li J, Wong LA comparative study on feature selection and claggiation methods using gene
expression profiles and proteomic patternsGenome Inforn2002,13:51-60.

Dy JG, Brodley CEFeature Selection for Unsupervised Learning] Mach Learn Re2004,5:845-889.



Chapter 3

Unsupervised Feature Filtering (UFF) *

3.1 Introduction

Feature selection is an important tool in many biological stuéesn the large complexity of
biological data, e.g. the number of genes in a microarrayiexgat, one naturally looks for a small
subset of features (e.g. small number of genes) that rpdgire the properties of the data that are
being investigated. This type of motivation fits into the gahscheme ofeature exploration, i.e.
searching for features because of their direct biological apt@y to the problem. An alternative
motivation is that opreprocessing searching for a small set of features to simplify colrmponal
constraints, to allow for the handling of high throughput biological exm@ats, and to separate
signal from noise. Practically, selection of a small agfegenes is of ultimate importance when a
small set of informative genes can be the basis for cali@gnosis and a basis for development of
gene associated therapy.

Preprocessing often involves some operation on feature-space irtordduce the dimensionality
of the data. This is referred to Bsature extraction, e.g. restricting oneself to the finstprincipal
components of a PCA routine. Note that superpositions of feafppsar in this example.
Alternatively, infeature selectionwe limit ourselves to particular features of the originabjpem.
This is the subject to be studied here. Let us refer tiofld comprehensive survey.

It is conventional to distinguish betweemapper andfilter modes of the feature selection process.
Wrapper methods contain a well-specified objective functiongchvehould be optimized through
the selection. The algorithmic process usually involves raévieerations until a target or
convergence is achieveBeature filtering is a process of selecting features without referring back
to the data classification or any other target function.cleme find filtering as a more suitable
process that may be applied inwarsupervisedmanner.

Unsupervised feature selection algorithms belong to the field sfipenvised learning. These
algorithms are quite different from the major bulk of featwekection studies that are based on
supervised methods (e.g., [1, 2], and compared to the lagteelatively overlooked. Unsupervised
studies, unaided by objective functions, may be more difficultny cait, nevertheless they convey
several important theoretical advantages: they are unbiagatkither the experimental expert nor

by the data-analyst, can be preformed well when no prior knowlsdaeailable, and they reduce

! Based on the pap&iovel Unsupervised Feature Filtering of Biologi€ta, Roy Varshavsky, Assaf Gottlieb, Michal
Linial and David Horn, Bioinformatics 2006, 22(1&907-513 (Presented in ISMB 2006).



the risk of overfitting (in contrast to supervised featurecsigle that may be unable to deal with a
new class of data). The downside of the unsupervised approachiigetias on some mathematical
principle, like the one to be suggested in this study, and norgaars given that this principle is
universally valid for all data. A common practit® resolve this quandary is to demonstrate the
success of the method on various biological datasets and cotin@aesults obtained by the method
with external knowledge.

Existing methods of unsupervised feature filtering include rankirfgaitires according to range or
variance (e.g., [3], [1], selection according to highest rdnthe first principal component (‘Gene
shaving’ of [4, 5] and other statistical criteria. An exampighe latter is [6] where all possible
partitions of the data are considered and the corresponding featarkbeled. The partitions with
statistical significant overabundance are selected. Anothenpeais of [7], who optimize a
function based on the spectral properties of the Lapladitre features.

Here we present an intuitive, efficient and deterministiccgple, leaning on authentic properties of
the data, which serves as a reliable criterion for featurking. We demonstrate that this principle
can be turned into efficient and successful feature selectbhoas. They compete favorably with
other popular methods.

3.2 Methods

3.2.1 Mathematical framework and notations

Let us consider a dataset ofinstanceSApxm = { 1. 2....., ..., n} , Where each instance, or
observation, ;is a vector ofm measurements or features. The objective is to define &tsabs
features M of sizem.<m, that, in a sense to be defined below, best reprethentata.

In PCA (or SVD) studies it is conventional to regard the bestesentation as the minimal least-
square approximation of the original matrix [8]. This principle canfddewed also in feature
extraction but it has the disadvantage that it may preseoveany properties of the data, including
systematic noise. We will define our 'best approximation' usipgreiple based on SVD-entropy,
and subject it to an a-posteriori test: given different selectles of features choose the ones that
prove useful as basis for the best fit to labeled data, emorpeclustering within the data-space
spanned by the selected features and compare the results with &assification. This comparison

will be performed using the Jaccard score.

J L U ¢ )

2 . . . .
In this paper A (or fxm)) is @ matrix and (or ;) is a vector.



where n1; is the number of pairs of instances that are classified hegeboth in the ‘expert’
classification and in the classification obtained by therélym; n;o is the number of pairs that are
classified together in the ‘expert’ classification, but nothe algorithm’s classification; is the
number of pairs that are classified together in the alguor# classification, but not in the ‘expert’
classification;

The Jaccard score reflects the ‘intersection over union' betwleenalgorithm's clustering

assignments and the expected classification. Its vadumgg from O (no match) to 1 (perfect match).

3.2.2 Ranking by SVD-Entropy

[9] have defined an SVD-based entropy of the dataset. Denaj¢hieysingular values of the matrix

A. 32 are then the eigenvalues of thexmatrix AA. Let us define the normalized relative values [8]:

VEE T Y)

k

and the resulting dataset entropy [9]:

1 N
ogyy oM @

This entropy varies between 0 and 1. E = 0 corresponds to an ultraebidkiaset that can be
explained by a single eigenvector (problem of rank 1), and E = 1 damdsdisordered matrix in

which the spectrum is uniformly distributed.

Figure 1 demonstrates two examples of 5 eigenvalues, onehigithentropy (left, 0.87) and the
other with low entropy (right, 0.14). As can be seen in figureHenathe entropy is very low, one
expects a very non-uniform behavior of eigenvalues. One should nosedhfistandard definition
of entropy, based on probabilities [10], with the one used herehwhlzased on the distribution of
eigen- (or singular) values. Although standard entropy considerammesar in feature selection
methods, such as the supervised bottleneck approach [11], the &&edntropy for feature

selection is a novel approach.
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Figure 1: A comparison of two eigenvalue distributions; k& has
high entropy (0.87) and the right one has low entr®.14)

We define the contribution of thieth feature to the entropyCE) by a leave-one-out comparison

according to

CEi:E(A[nXm]) - E(A{nx(m-l)]) (4)

where, in the last matrix, theh feature was removed.
Thus we can sort features by their relative contribution to ntregy. Let us define the average of
all CE to bec and their standard deviation to deWe distinguish then between three groups of
features:

1. CE>c+d, features with high contribution

2. c+d>CE;>c-d features with average contribution

3. CEc< c-d features with low (usually negative) contribution

Features in the first group (high CE) lead to entropy increaseghey are assumed to be very
relevant to our problem. Retaining these features we expettstamces to be more evenly spread
in the truncated SVD space. The features of the second groupuéna.nEheir presence or absence
does not change the entropy of the dataset and hence they carefieel fitut without much
information loss. The third group includes features that reduceotaeSVD-entropy (usuallg-d
<0). Such features may be expected to contribute uniformly to fieeedit instances, and may just
as well be filtered out from the analysis.

The first feature selection method that we propose is to tineself to the first group of features
according to th&€CE ranking. A will then be represented by a new matrix of ramkthe number of
features in group 1. Several other feature selection methedsiggested in the next section. In all
of them we assume that the same valuanptontinues to serve as the right guide for optimal

dimensionality reduction.



3.2.3 Three Feature Selection Methods

Entropy maximization can be implemented in three different wayis,aso the case in other feature
selection methods.

Simple ranking (SR): selent. features according to the highest ranking order of theivaies.
Forward Selection (FS): here we consider two implementations.

FS1: Choose the first feature according to the highest CE. Chouseg all other features the one
which, together with the first feature, produces a 2-feadatewith highest entropy. Continue with
iteration over alm-2features to choose the third according to maximal entropy, eilcrryriéatures
are selected (Box 1).

FS2: Choose the first feature as before. Recalculat€Ehealues of the remaining set of sizel
and select the second feature according to the higitfestalue. Continue the same way umti
features are selected (Box 2).

Backward Elimination (BE): Eliminate the feature with tbavest CE value. Recalculate the CE

1. Startwith M = and M'=M
2. Select the element with the highest
CE. Remove it from M’, insert it into M
3. While size of M < m
a. For each element in M’( m M) compute
its CE score on M ( E(Aw+i)-E(Aw)
b. Select the element with the highest CE
Score remove from M, insert into M
4. End
1. Startwith M =Mand M’ =
2. While size of M > m
a. Select the element in M with the lowest
CE Score
b. Remove from M , insert into M’
3. End

values and iteratively eliminate the lowest one until eatdres remain (Box 3).

Box 1: Pseudo-code of Forward Selection method FS1
Box 2: Pseudo-code of Forward Selection method FS2
Box 3: Pseudo-code of Backward Elimination method BE

One may view the different methods also as specifyingnaltiee ranking methods. Whereas SR
ranks the features according to their original CE values, FS1 ak® BE introduce other ranking

orders through the algorithms defined above. In the examples stuthedviee display rankings for

1. Startwith M = and M'=M
2. While size of M < m
a. Select the element in M’( m M) with

the highest CE Score

b. Remove from M’, insert into M
3. End

the entire range of 1 to.




In an appendix we analyze the computational complexity of akthgethods. SR is the fastest one
and BE is the most cumbersome one for large numbers of featutks.dramples to be discussed
next, we will compare the different methods with one anothewesder, because of complexity, the

BE method will be used in only one of the examples.

3.3 Results

Our four feature filtering methods were compared with each atheérwith two known methods:
Variance Selection (VS) and Gene Shaving (GS). The listi@variation of a method of [4] which
removes features iteratively according to their lowest tairoas with the first principal component.

For comparison we also look at results of random feature selemti several benchmarks.

3.3.1 The viruses dataset of Fauquet, 1988

This is a dataset of 61 rod-shaped viruses affecting various ¢atyac¢o, tomato, cucumber and
others) originally described by [12] and analyzed more thoroughly by [[3¢re are 18
measurements of Amino Acid Compositions (AAC) for the coaigmstof the virus that serve as 18
features. The viruses are known to be classified into fouredab®rdeviruses (3), Tobraviruses (6),
Tobamoviruses (39) and Furoviruses (Fypure 2 displays the CE values of all 18 features. Our
criterion sets =3. We test the performance of the system for the entnanige to see if this choice
makes sense. Before doing so, let us display the ranking asfiedé methods in Table 1. By
definition, SR has the same ranking order as CE in Figure Rislprtoblem, BE turns out to lead to
the same order as FS1, and all our three methods agree withtkeclon the first three features to
be selected. We include in Table 1 also the ranking order div&i&nce selection) and GS (gene
shaving). The two last ones are highly correlated with eadr ¢8pearman correlation 0.76) but
highly uncorrelated with our three methods (see the Supplementargridd section for more
details). In particular note that VS chooses ASX and GLXsaseicond and third features, whereas

for our three methods these two features are unfavoraBT&c(ﬂﬁh) choices.



0.02

-0.02 AAC

Figure 2: CE of the 18 Amino Acid Compositions (AAC) of theus dataset. ASX stands 1
ASN and ASP and GLX for GLN and GLU. The dasheé liapresents the value ofand the
dot-dashed line the value ofd.

SR FS1/BE FS2

Table 1: Ranking of the 18 Amino Acid Compositions of thieus
dataset according to various feature filtering rodth Colors from
white to black match the numbers that reflect theking of each

method.

Next we evaluate the subset selection using the Jaccard 3tiseis done by applying the QC
clustering algorithm [14] on the 61 viruses described by thetedleubset of features. QC was
applied after reduction of each space to normalized 3-space dmngsing the parameter0.5

(for details see [15], and COMPA@T Results are shown in Figure 3 for three of our four methods.
All three do exceedingly well at the three features lel®ed Q) whereas the variance method obtains

J=0.4. Note that our methods, with our choice of mc, lead to & rhatter result than J=0.6,

% http://adios.tau.ac.il/compaot http://www.protonet.cs.huji.ac.il/compact




obtained when all 18 features are taken into account. This exemght importance of keeping
features that maximize the entropy. The feature ranking of R81BE& is the only one that keeps
performing very well with more than three selected featuBenilar relative successes of feature
selection evaluation (although less favorable J-scores) waxmettwith other clustering methods,
such as K-means. This comparison, as well as other detailsould not be fitted into this paper,
can be found in the Supplementary Matérial

[12] have argued that the AAC of the coat protein of planises are specific to the structure of the
viral particle, to the mode of transmission and to sub-groupinyuges to distinctive classes. Our
results indicate that choosing only 3-4 features correctly, ngt mmelserves the classification but
allows much better performance with minimal failure. linteresting to note that the 3 highest-
ranking amino acids, GLY, THR and LYS are not dominating the cad¢ips. These amino acids
account for only 13-21.5% of the coat proteins, a fraction that itasita the average percentage in
the entire proteins database (18.3%). Further investigation ghatwseither their size nor polarity
or electric charges differentiate these three amino acafs the remaining. Nevertheless, since
GLY, THR, LYS and MET (the fourth ranked AAC, according to thel Fethod) represent
different functional groups, we conclude that the FS1/BE rarikiegnsistent with selecting amino

acids that carry different physico-chemical properties.

—4—FSUBE
0.4 R
— — AllFeatures
Variance
—=e—Random
0.2 T T T T T T T T T T T T

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of features selected

Figure 3: Filtering quality of the virus dataset is testeg Iaccard scores of
clustering performed in spaces spanned by them fee® Best results are
obtained for FS1 (identical with BE in this casalié&&R form:=3. FS1 continues
to perform very well with more features. Featuréestton according to VS
performs worse. For comparison we include also\aiuation based on a large

group of random order rankings.
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3.3.2 The MLL dataset of Armstrong et al., 2002

The second dataset that we apply our methods to is that of Armsttoalg 2002, who have
attempted to cluster data of three Leukemia classes: lymgicblaeukemia with MLL
translocations and conventional acute lymphoblastic (ALL) and aoy&ogenous Leukemias
(AML). In the experiment, 12582 gene expressions were recorded, Asymetrix U95A chips on
72 patients, 20 of which diagnosed as MLL, 24 ALL and 28 AML. They shawatdthese 3
Leukemia types can be divided according to some gene expressionveiowhen filtering in an
unsupervised manner (selecting 8700 genes that show some variab#ixpression level), the
clustering results were unsatisfactory and much inferiorgopervised selection of 500 genes that
best separate between the cancer patients.

Applying our CE criteria we use the method SR, and comparesdhgstof these feature-filtered
data with VS (Figure 4). Clustering was performed by K-Meawsraging over 100 runs and using
K=3 with data projected onto a unit sphere in 3D-reduced spaceTli&lasymptotic Jaccard score
is J=0.426 for this K-Means method. As can be seen in Fig\i® grovides no improved quality,
whereas SR leads to J-values between 0.7 and 0.8 for filtenedggoups of sizes 250 to 450. The
preferredm. value according t@+d of SR is 254. Better results can be obtained by using the QC
algorithm, but the same trend and conclusions regarding featweticelhold also there. It is
interesting to note that QC clustering of our unsupervised SRoaetor m.=254, reaches J=0.85
(see supplementary).

We display the K-Means analysis in Figure 4, in spitesopdorer performance compared to QC, in
order to emphasize that the quality of the feature filterindhatets independent of the clustering-

test performed on the filtered data.
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Figure 4: Clustering quality of two feature selection hods. Results ar
averages of 100 runs o-Means clusiring.



3.3.3 The Leukemia dataset of Golub et al., 1999

After demonstrating the effectiveness of our methods on both amdllarge datasets, we choose a
third dataset [16] that has served as a benchmark for seshestéring algorithms ([17, 18] and
more} and feature selection methods (e.g., [2, 19]. The expetisampled 72 Leukemia patients
with two types of Leukemia, ALL and AML. The ALL set is furthgivided into T-cell Leukemia
and B-cell Leukemia and the AML set is divided into patients wdnehundergone treatment and
those who did not. For each patient, an Affymetrix GeneChip mehshbeeexpression of 7129
genes. The task is clustering into the four correct groups wihbki2 patients in a [7129x72] gene-
expression matrix. This clustering task is quite difficultingsthe QC method (in normalized 5
dimensions with =0.54), applied to the data without feature selection, one olahg07, which is
the best score for a varietyafistering algorithms [15].

The CE values for the 7129 features of this problem are dispiay€idure 5. Most of the features
have a zero score. There are about 150 large CE valuesdee2 %) and about the same number of
small CE values. The bright color within the inset indicalesfirst 100 features selected by FS1.
While their ordering is different from the SR ranking, mostheim belong, as expected, to the class
of large CE values. The overlaps of the first leading feataféSR with those of FS1 and FS2 are

shown in the Venn diagrams of Figure 6.

x 10

0 1000 2000 3000 4000 5000 6000 7000
Feature



Figure 5: CE of the 7129 genes of the Golub datased(dashed lines represeri). The inset zooms into
the highest-ranked 300 genes, with bright dotsifiigiy the top 100 features according to the FSihoe

FS1

SR

FS2

Figure 6 : Venn diagram of relations among the f
100 features selected by different methods.

Next we turn to testing the filtering methods to see how weljl to in the clustering task, i.e. what
are the Jaccard scores that are obtained by applying an aehtistering algorithm to the different
spaces spanned by the selected features. The clusteringhaigasithe QC method mentioned
above. Figure 7 shows that good results can be obtained by oundiltegthods once the gene
subset is larger than 100 or so. For feature sets of sizes 120 veed® selections (of FS1 and
SR) that lead to Jaccard scores that are better than J=th& @&ymptotic limit. Gene subsets larger
than 300 result in Jaccard scores below the asymptotic limit f complete list, see the
supplementary material). Also in this problem the GS resuéisirderior to those of the other

methods.
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Figure 7 Jaccard scores of QC clustering for different featiiitering methodson small gene
subsets of the Golub data

3.3.3.1 Biological interpretations of the Leukemia datasebf Golub et al., 1999

It is clearly of interest to look at the 100 or so genesphé#icipate in the sections that lead to the
best Jaccard score. In Figure 6 we saw that there e)dstsstantial overlap between the choices of
our three different methods. To study the biological significasfceur subset of overlapping 54
genes we have run a GO enrichment analysis (NetAfiieb toof) on this subset. As displayed in
Figure 8 (and supplementary), we are able to assign some ptebadgical processes to the
selected genes.

The association of our selected 54 genes with functional aiorotatated to defense, inflammation
and response to pathogen (with p-value ranging fotoee?) is intriguing (Figure 8). It may
underlie the difference in AML and ALL in view of the differesuisceptibility of the patients to
treatment such as chemo and radiotherapy. Thus the listed ppotei@sses may not only be
considered as 'subtype cancer markers' but as an indicatiore dfidlogical properties of the
cancerous cells. Specifically, cellular response to pathdgestress and to inflammation may be
different for AML and ALL. It may also provide a focused hypothdswards the processes and
mechanisms that can be used as a follow up in monitoring the autobrtherapy in case of
Lymphoma.

5 http://www.affymetrix.com/analysis/index.affx
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Figure 8: Diacyclic graph of GO enrichment. Shown are GO e®0§R0] with
significant p-value of enrichment as determinedthsy NetAffxX™ toof (p-value <
5e-4). The color of each node matches its sigmifiealevel (along the spectrum of
red shades, light: lowest to dark: highest).

3.4 Discussion

We have introduced a novel principle for unsupervised featureirfdtethat is based on
maximization of SVD-entropy. The features can be ranked accotdlittieir CE-values. We have
proposed four methods based on this principle and have tested tHeinese on three different
biological benchmarks. Our methods outperform other conventional unsegefilisring methods.
This is clearly brought out by the examples that we have athldore details are provided by our
Supplementary Materi&lin particular, it is striking to note how much more successfuhwthods
are compared to VS, the popular variance ordered method.

The major theoretical difference between the two approachibati¥S relies on a measurement of
one feature at a time. The entropy-based approach, as impldnbgritee CE calculation, takes into
account the interplay of all features. In other words, the contiibof a feature, its CE, depends on
the behavior of all other features in the problem. Thus varisnoely one of the factors that affect

the CE value. The CE value depends also on the correlationse(@bsence thereof) of a given

8 http://adios.tau.ac.il/compact/UFF/SUPP




feature with all others. The difference between the rankir§oaind VS in Table 1 bears evidence
to the difference between the two methods.

We have demonstrated that our selected features have impodkmgfidal significance, through a
GO enrichment analysis of the genes in the Golub datasemiarsianalysis of the Armstrong
dataset is presented in the Supplementary Mdtetiatthe virus dataset, we have shown that the
FS1/BE filtering method works exceedingly well for a large ranfj@mumbers of features. The
biological significance of the relevant choices of amin@sicemains to be uncovered.

The CE ranking leads to an estimate of the optmalhoice. This is an important point by itself. In
other methods, such as VS, it is almost impossible to makelibise on the basis of variation of
feature properties. Conventionally one makes therefore an sylitraice, such as selecting 10% or
50% of the features. In the three datasets discussed in our pagsmmMis quite clear that our
suggested optimat, as judged from the CE scores, leads indeed to optimal reBudtsmproved
Jaccard scores indicate that the selestddatures have biological significance.

Our four methods differ in computational complexity. SR is ihgkest one, since it relies just on
sorting the initial CE values. In an appendix we compare its axitplwith that of the other
methods. The relative values depend on the choiog (ihe size of the subset).

FS1 chooses features that lie high on the original CE-score, iteogtimal selected set will have a
large intersection with that of SR. Nonetheless, forllsmsnbers of selected features, the order may
be very important. Thus, in the virus problem, FS1 turns out to lse more successful than SR. In
the Leukemia datasets, where reasonable results were dbtaifarger feature sets, FS1 was not
found to be significantly better than SR. Biologically one may exiecappearance of features that
are degenerate with one another, i.e. have quite identibavioe on all instances. Such duplicity
can be included by the SR method but excluded by the FS1 one.

Our optimal feature-filtered sets in the two Leukemia problemmsout to include just few percents
of all genes. Thus a CE-analysis indicates that a smallaub@f all genes is the most relevant one
to the data in question. We have seen that this relevance isdutribg both Jaccard scores and GO
enrichment analysis. The pursuit of small feature sets én @ftided by wishful thinking that the
essence of biological importance can be reduced to a saehlcset. Here we find that the small
number obtained in our analysis is an emerging phenomenon, and magdided as a true

biological result.

3.5 References

1. Guyon |, Elisseeff AAn Introduction to Variable and Feature Selection Journal of Machine Learning Resear2f03,3:1157-
-1182.



2. Liu H, Li J, Wong L:A comparative study on feature selection and claggiation methods using gene expression profiles and
proteomic patterns. Genome Inforn2002,13:51-60.

3. Herrero J, Diaz-Uriarte R, DopazdGene expression data preprocessingioinformatics2003,19(5):655-656.

4. Hastie T, Tibshirani R, Eisen MB, Alizadeh A,\WeR, Staudt L, Chan WC, Botstein D, Brown'Bene shaving' as a method
for identifying distinct sets of genes with similarexpression patternsGenome BioR000,1(2).

5. Ding C, He X, Zha H, Simon HAdaptive dimension reduction for clustering high dmensional data IEEE International
Conference on Data Mining002:107-114.

6. Ben-Dor A, Friedman N, Yakhini Zlass Discovery in Gene Expression DatRECOMB2001.

7. Wolf L, Shashua AFeature Selection for Unsupervised and Supervisedhfierence: The Emergence of Sparsity in a Weight-
Based Approach JMLR 2005,6:1855-1887.

8. Wall M, Rechtsteiner A, Rocha ISingular Value Decomposition and Principal Componen Analysis. In: A Practical
Approach to Microarray Data Analysig&dited by Berrar D, Dubitzky W, Granzow M: Kluw@(03: 91-109.

9. Alter O, Brown PO, Botstein C8ingular value decomposition for genome-wide exprs®n data processing and modeling
PNAS2000,97(18):10101-10106.

10.Shannon CA mathematical theory of communication The Bell system technical journs48,27:379-423, 623-656.

11.Tishby N, Pereira FC, Bialek Wrhe Information Bottleneck Method. Proc of the 37-th Annual Allerton Conference on
Communication, Control and Computi§99:368-377.

12.Fauquet C, Desbois D, Fargette D, VidalG&ssification of furoviruses based on the amino @& composition of their coat
proteins. Dev Appl Biol1988,2:19-36.

13.Ripley BD:Pattern Recognition and Neural Networks Cambridge: Cambridge University Press; 1996.

14.Horn D, Gottlieb AAlgorithm for data clustering in pattern recognition problems based on quantum mechanic$hys Rev
Lett2002,88(1):018702-018702.

15.Varshavsky R, Linial M, Horn DCOMPACT: A Comparative Package for Clustering Assesment In: Lecture Notes in
Computer Scienc&759 edn: Springer-Verlag; 2005: 159-167.

16.Golub TR, Slonim DK, Tamayo P, Huard C, GaasekhtM, Mesirov JP, Coller H, Loh ML, Downing JR,l@Qari MA et at
Molecular Classification of Cancer: Class Discovenand Class Prediction by Gene Expression MonitoringSciencel999,
286(5439):531-537.

17.Sharan R, Shamir RELICK: a clustering algorithm with applications to gene expression analysi$roc Int Conf Intell Syst
Mol Biol 2000,8:307-316.

18.Getz G, Levine E, Domany Eoupled two-way clustering analysis of gene microaay data. Proc Natl Acad Sci U S 2000,
97(22):12079-12084.

19.Liu B, Cui Q, Jiang T, Ma A combinational feature selection and ensemble neak network method for classification of
gene expression dat8BMC Bioinformatics2004,5:136.

20.Camon E, Barrell D, Lee V, Dimmer E, ApweilerThe Gene Ontology Annotation (GOA) Database--an imgrated resource
of GO annotations to the UniProt Knowledgebasdn Silico Biol2004,4(1):5-6.

21.Anderson E, Bai Z, Bischof C, Blackford S, Deetrd, Dongarra J, Croz JD, Greenbaum A, HammaginlyicKenney Aet at
LAPACK User's Guide (http://www.netlib.org/lapack/lug/lapack lug.html), Third edn. Philadelphia: SIAM;
1999.

3.6 Appendix

3.6.1 Computational complexity of the four methods

In the following calculations, we will assume that<n, which will give upper bound to the
complexity. We will not assume that<n.

The computation of all eigenvalues for a dense symmetrigxmatuiresO(p°) operations, wherp

is the size of the matrix [21]

We will define the complexity of the initial computatiohal CEs to beD(m*min(n,m§) K.

SR: The computational complexity is lowest for the SR methodrel$only one calculation of all
CEs, followed by sorting. Hence the complexitié + m*logm)

FS1: Calculation of all CEs followed Ifyn. -1) repetitive diagonalization of a growing matrix (from
2 to(m. -1)), leading ta(K + mmy?).



FS2: Calculation of all CEs followed kyn. -1) repetitive diagonalization of a decreasing matrix
(from m-2 to (m-m)), leading toO(n™-(m-my)°). Note that here, ih< (m-m), the complexity is
Oo(mmn°)

BE: Calculation of all CEs followed bgm-m-1) repetitive diagonalization of a decreasing matrix
(from m-2 to (m-1)), leading toO(nT-m.°). Note that here, if n<m, the complexity is reduced to
O((nf-mHn?).

Clearly computational complexity is lowest for the SR metlsow;e only one calculation of all CEs
is needed. BE or FS2 have the highest complexity, dependingethemmn>2m. or not.

3.7 Supplementary Material

Figures S1-S13 and GO enrichment table are also foumithi'adios.tau.ac.il/compact/UFF/SUPP
and in the additional CD.

3.7.1 The Viruses dataset of Fauquet, 1998
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Figure S9:Variance of the features of the virus dataset

Spearman | SR FS1 FS2 BE VS GS
| SR 1 0.8824 0.63 0.8824 -0.0114 -0.4572
FS1 0.8824 1 0.4056 1 -0.2384 -0.676
FS2 0.63  0.4056 1 0.4056 04861  0.162
BE 0.8824 1 0.4056 1 -0.2384 -0.676
VS -0.0114 -0.2384  0.4861 -0.2384 1 0.7647

GS |-o.4572 -0.676 0.162 -0.676  0.7647 1

Table S2:Spearman correlation of the features ranking adegri the various selection methods
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Figure S10:Spearman correlation of the features ranking acegrt the various selection methods
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Figure S11:The quality of the various selection method of sidataset (evaluation done by QC algorithm)
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Figure S12:Difference in clustering quality of the Virus daggsby selection according to the various seleatiethods. Displayed is
the difference from the variance selection (VS).
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Figure S13:The quality of the various selection method of sidataset (evaluation done by K-Means algorithm



3.7.2 The MLL Leukemia dataset of Armstrong et al., 2002
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Figure S14:Simple Ranking of the MLL dataset
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Figure S15:The quality of the various selection method of MilAtaset (evaluation done by QC algorithm
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Figure S16:Difference in clustering quality of the MLL datasky selection according to the various selectimthods. Displayed is
the difference from the variance selection (VS).

3.7.3 The Leukemia dataset of Golub et al. 1999
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Figure S17:CE of the 7129 genes of the virus dataset. Thet pr®vides zoom into the highest-ranked 300 gemigls,bright dots
signifying the top 100 features according to th& R&thod.
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Figure S18:Log of the variance of the 7129 gene in the Leukedaitaset
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0.8
0.7
0.6
0.5
0.4

Jaccard

0.3
0.2

1)

N O

—e— Random
+— Variance (VS)

QO O O © N0 O & O
AR I S A R I

— 4+ SR # of features selected

— — All Features

Figure S20:The quality of the various selection method of Gadliataset (evaluation done by QC algorithm

25

Counts

Locations of Golub's genes according to CE ranking

0 500 1000 1500 2000 2500 3000 3500 4000 4500

CE ranking

Figure S21 The location of Golub’s 50 genes on the CE ragigraph



Chapter 4

UFFizi: A Generic Platform for Ranking Informative Features ’

4.1 Introduction
The present information age is characterized by exponernitalgasing data, e.g. in numbers of

documents and in records of various kinds or biological dafarovad experimental techniques,
such as high throughput methods in biology, allow for the measuteshthousands of features
(genes) for each instance (single gene-expression micrqaargatient). This leads to a flood of
data, whose analysis calls for preprocessing in order to redige and enhance the signal through
dimensionality reduction. This is important for both enabling theiegdmn of various
categorization techniques and allowing for biological inferdram the data.

Dimensionality reduction algorithms are usually categoraedxtraction or selection methods.
Feature extraction transforms all features into a loweedgion space, while feature selection
selects a subset of the original features. A benefiteofatter is the ability to attach meaning to the
selected features. This is important both for exploratidghebiological reality and for preparing a
more concise experimental layout. The method to be studiedsheategorized as feature selection.
It is customary to divide feature selection methods into ywed: supervised, in which a target
function is known and one tries to rank features or optimize sdueetive function relative to it,
and unsupervised, in which one has no additional informatiomdiegethe instances. In practice,
the abundance of unlabeled data or data that might posses npdsglble labeling, calls for an
unsupervised approach.

While supervised feature selection methods are abundant [1], uwvisedemethods are scarce, most
of them tested on labeled data [2]. Nevertheless, ungspdrfeature selection methods may play an
important role even in supervised cases. Being unbiased Iab#leng of the instances,
unsupervised feature selection can be used as a preprocessiiog supervised learning algorithms
providing reduction of overfitting (for a comprehensive revieavrefer to [2]). As described in [3],
feature selection from unsupervised data can be applibceat different stages: before, during and
after clustering. Methods that operate before clusteringeéeered to as filter methods. Common
methods of unsupervised feature filtering rank features accaaeither (1) their non-zero

loadings in the first principal components [4] , (2) their ndized range,(3) entropy or (4) variance

" Based on the paper UFFizi: A Generic PlatformRanking Informative Featuressaf Gottlieb, Roy Varshavsky,
Michal Linial and David Horn, Submitted.



of the feature as calculated from its values on all mt&ta [2, 5]. All these methods estimate the
importance of each feature independently of all others.

Our Unsupervised Feature Filtering (UFF) algorithm [6] d&fieom aforementioned methods in
that it ranks features based on a criterion that involVestar features. It also provides a natural
cutoff for selecting the number of features. We have akaqusly showed that UFF also selects
stable feature sets under perturbations [7]. Our aim in thii$eais to introduce a new framework,
based on the UFF. We (1) explore the properties of UFRrenigatures it selects, (2) introduce a
faster approximate version, (3) suggest indicators for thityatoilapply the method to certain
datasets and (4) extend it by proposing a method called Unsgeeinvgtance Selection (UIS) for
inspecting and eliminating potential outlier instances. Aefagersion of UFF, together with
identification of indicators for the ability to apply the methodlifferent datasets enables the
implementation of UFF as a web-tool. The performance obtfe is shown to surpass commonly
used unsupervised filtering methods (e.g. variance, featuapghtor the datasets used in this
study. These findings are consistent with the findings reportg8].

In the Results section, we explore the properties of UFF on egasaphsets, introduce a faster
algorithm for UFF and analyze which datasets can be evaluategisstully by the UFF method. We
then describe the UDO method and provide biological insights onayghenicroRNA expression

from a wide range of diseased states.

4.1.1 List of abbreviations

UFF, Unsupervised Feature Filtering; SVD, Singular Valeednposition; UIS, Unsupervised
Instance Selection; CTD, Comparative Toxicogenomics Databas

4.2 Methods

4.2.1 Datasets
We use three gene-expression microarray datasets with knodindabeorder to demonstrate the

performance of UFF. They were compiled from the online pubtiosiory of the National Center
for Biotechnology Information/GenBank Gene Expression Omnibus (@&tapase [8], [9] . Data
collections are: (i) Gene expression measurements takerskiartissues including 7 normal skin
tissues, 18 benign melanocytic lesions and 45 malignant meldadinaeries entry GSE3189); (ii)
HIV dataset (series entry GSE6740), containing gene exprassiasurements from 20 CD4+ and
20 CD8+ T cells from HIV patients at different clinicalg#a; (iii) Hepatitis C (series entry
GSE11190) containing gene expression measurements from 78 sampfassiogmf 38 blood

samples and 40 liver biopsy, before and after interfeeatrtrent of Hepatitis C (19 blood samples



before and after the treatment, 21 and 19 liver biopsieseband after respectively). All these
datasets are Affymetrix Human Genome U133A Array (Hep&iisa U133 plus 2.0 array).

In addition, we present results obtained from using UFF on Thee€C&@enome Atlas (TCGA)
gene-expression and microRNA (miRNA) expression datasets[11]e Tagasets are comprised of
samples taken from (i) glioblastoma multiforme (GBM) angdiiarian serous cystadenocarcinoma
(OV) patients. Gene-expression datasets are measured u$ymgetkix Human Genome U133A
Arrays and Agilent G4502A_07 platforms. miRNA expression is medsuseng Agilent Human
mMiRNA Microarray Rell2.0 and Agilent 8 x 15K Human miRNA-specilatforms. Details of

these datasets are specified in Table S1 in the supptary material.

4.2.2 Unsupervised Feature Filtering (UFF)

UFF is based on an entropy measure applied to Singulae \Zsaomposition (SVD). Let A denote

a matrix, whose elements Aij denote the measurement ofég¢ain instance, e.g. expression of
genei under conditiorj. SVD decomposes the original matrix A into A=USWhere U and V are
unitary matrices whose columns form orthonormal bases. The diagatrat S is composed of
singular valuess() ordered from highest to lowest. SVD is a common techniyéeature

extraction. UFF uses the information contained in the singalaes in order to select the features.
Let g be the rank of the matrix (g=min(n,m), where érnumber of instances and m is the number
of features). Using the singular valugspne may define the normalized relative squared values
[12] [13]:

A dataset that is characterized by only a few high norexlsngular values, whereas the rest are
significantly smaller, reflects large redundancy in theda@n the other hand, non-redundant
datasets lead to uniformity in the singular values spectdiff.exploits this property of the
spectrum in order to measure how each featumduences this redundancy, while favoring features
which decrease redundancy. The score of a featsmefined using a leave-one-out principle. A
function f is calculated on the set of all singular valoeshie original matrix and for the
corresponding set of the matrix without featur€he difference in the values of f defines the score
of each feature i. In this work, we use the SVD-entrépyyas the function f [13] [14] (note that this
'Shannon'-like function does not use probabilities). The scoreeaftaré can be thus regarded as its

contribution to the SVD-entropy.
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Other functions may be used insteadHofThey have to be monotonic and vary from a maximum,
when all singular values are equal, to a minimum when themysone singular value bigger than
zero. Two such functions that we tested are the negadlue of sum of squares and the geometric
mean. The results using these functions are very sitoiléiose obtained using the SVD-entropy,
hence we will not elaborate further on them.
Figure 1 displays the typical results after applying th& Elgorithm to the melanoma dataset (see
the datasets subsection for description), and sorting thedsatacording to the decreasing score of
the UFF. Clearly, one can divide the features into threeps:

1. Features with positive score. These features increasmtiopy.

2. Neutral features. These features have negligible influentiecoantropy.

3. Negative score features. These features decrease the entropy
We follow the Simple Ranking (SR) method of UFF, denoting pasgoore features (group 1) as
features whose scores lie above the mean score + one stdqafipd line in figure 2), negative
score features (group 3) as features whose scores lie belove#tmescore - one std (lower dotted
line) and neutral features (group 2) the rest. Note that masires fall into group 2, while groups 1
and 3 represent minorities. UFF [6] selects group 1 as oimjathe most relevant features. The
rationale behind this selection is that, because thesgdeahcrease the entropy, they decrease
redundancy. Hence one may expect that instances willttex beparated in the space spanned by
these features. Further analysis of this group and its ctsopawith the two other groups is

presented in the "properties of selected features" section.
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Figure. 1. UFF Scores of the 22283 genes of the melanoma edaterdered by

decreasing scores. Dashed lines represent meag)ssini(score).
In this paper, we follow the Simple Ranking (SR) method of Wekecting all positive score
features (group 1). Alternative UFF methods suggested mr¢6hot shown.

4.2.3 GO and Pathway Enrichment
Enrichment of Gene Ontology (GO), KEGG pathways and PubMed pppesented here were

calculated using the DAVID [15], [16] and ToppGene tools [17].ifiéations were also done using
other tools such as Ontologizer [18] and GO Tree Machine [19]

4.2.4 UFF Performance Validation
Clustering comparison between different unsupervised featie@ioa methods was performed

using the widely usekimeans clustering algorithm. In order to provide an unbiasedasop, all
feature selection methods were tested with the same in@meterk (k=3 for the melanoma
datasetk=2 for the HIV dataset and-4 for the Hepatitis-C dataset) for tkeneans clustering
algorithm with no additional preprocessing. The clusteringrepsated 100 times for each feature
selection method and each number of selected features.

Random selection was used to generate 100 different setigtd-eatropy was performed on each
feature individually, using the same formalism as in equatiMie8used the Jaccard score [20] to

measure the quality of the clustering relative to knoveel&



4.3 Results

4.3.1 Analyzing and Improving UFF
In this section, we present analysis of UFF selectedriesand provide improvements and

extensions to the algorithm. The improvements include (feFasrsion of the algorithm and (ii)
Addition of a criterion for assessing the quality of the tsgudovided by UFF. We further extend
the algorithm by introducing the Unsupervised Detection of Ost{idDO).

4.3.1.1 Properties of Selected Features
We investigated the general properties of features selectadFBy by studying their statistical

properties. We demonstrate these properties on the melanomaegpression dataset (see
Methods). Figure 2 displays the mean (A) and variance (B)|dealures (as measured on all
instances), for the melanoma dataset. The features areditaetheir UFF rank, which is displayed
in Figure 1. Dotted lines, denoting the mean (score) + one sthddwiation, supply the separation
between the positive (group 1), neutral (group 2) and negative (@)osgore features (Methods).
Most features belonging to the second (neutral) group possess lowamgaariance. It is evident
that both the positive score features and the negative saitgds have high mean (in general high
absolute values of mean) and variance. This explains a majeredife between UFF and the
Variance Selection method: while UFF selects features fyroup 1, Variance Selection chooses
features from both groups 1 and 3. It should be noted that if tatiséhis nature (e.g. gene-

expression) undergo standardizing operations, UFF selection nmagarengless.
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Figure. 2. (A) mean and (B) variance of the melanoma dat@sedxis refers to genes ordered according to UFF
score).

An important difference between the positive (group 1) andtiveg@roup 3) features is displayed
in Figure 3. This figure shows the projection of typical pesiand negative features (A and B,
respectively) on the SVD eigenvectors (or principal compon&ds) of the original data matrix.
Positive score features have more evenly distributed prajesctin the PCs relative to the negative
score features, which project most strongly on the firstitA€the latter property that explains the
negative score: by preferring the leading principal componese tleatures decrease SVD-entropy.
We present in the Appendix a proof showing that when a featsrerlig on the first PC, it is bound
to have a negative score.

The differences in projection on the principal components betthegpositive and negative scored
features, may provide an explanation for the difference betaeeapproach and the sparse-PCA
approach [4]. The latter selects genes that correlataelynaith the leading PC, while UFF prefers a
wider distribution.

Finally we observe that negative score features have skewlosgsto zero and kurtosis close to
three. Hence we conclude that negative score featuressposgte Gaussian distributions, which
can be regarded as baring no indicative signal over the iestafikese noisy features are discarded

by UFF but selected by Variance Selection, which explainsitiferior results demonstrated in [6]
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Figure 3. Projection on the 70 principal components of gicgl - (A) positive
score and (B) negative score - feature from theanwmha dataset. Note the
outstanding value of PC1 in B.

4.3.1.2 Fast UFF

In order to obtain the UFF ranking of features one perfornisnes the SVD evaluation, whekéis
the number of features. This has the complexi®@f*min(N,MY) (see [6]). The data matrix of

M features byN instances is often represented by its SVD transformati#SV', where U and V
are unitary and S is the diagonal matrix of the singullresa The associated Gram matBixA'A,

of sizeNxN, can then be written as C=%&, with eigenvalues that are the squares of the singular
values ofA and thus can be used directly to calculate the SVD-entragyoRng a row from, i.e.
removing the featur of lengthN, the Gram matrixC changes to

k T k
C C f f C (7)

We assume that removal of one feature can be regardesivesd| gerturbation, an assumption
which generally holds for a large enough number of featuressifgalar values can be
approximated by using the eigenvectors of the Gram m@tox the new matri'. Plugging into

equation (1), the changed SVD entropy is:
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An extended formulation is given in the Appendix.

This approximation reduces the complexity to O(Myiading to considerable faster calculations.
Table 1 compares the running times of fast UFF vs. regli&rfor three of the datasets used in this
paper. As can be seen, the reduction in running time isasuiast allowing for an online
computation.

The quality of the approximation lies in the assumption of ispeaturbations. In order to test
whether this assumption holds for a given dataset, we ingme8MD entropy of the matrix, defined
to lie between 0 and 1 (see Methods). For most data-setsdlsudied it is smaller than 0.1. Such a
small value of the entropy guarantees that only a few eijgs/gorincipal components) are of
importance, and the removal of a single feature is indestdall perturbation assuring the validity of
the approximation (equation 2). In two of the studied datas&d(@&d OV microRNA) the SVD
entropy is large (0.59 and 0.34 correspondingly), putting the approsim{aquation 2) in doubt. In
both cases one should therefore resort to the regular UEHatain to obtain reliable results

Fast UFF allows for the analysis of much larger datasetsedder it enables incorporating this
algorithm in a web-based tool. Computationally, it allows fdis&ributed evaluation of UFF scores,
once the eigenvectors of the Gram matrix C are obtainkd.cdlculation of the SVD entropy of the
matrix is incorporated into the UFFizi web tool, initiating arming when the results of the fast UFF
might deviate substantially from the regular UFF.

4.3.1.3 When is UFF Applicable

While UFF works very well on many datasets, including mosegexpression data we have
analyzed, we have found datasets where selection accoodifeftis not effective. Figure 4
presents such an example using a dataset of pre-selelitegcte regulated genes. On such a
dataset, UFF did not lead to improved clustering. We notéhbatistribution of score values in
Figure 4 is somewhat different from Figure 1. In paracugroup 2 features display large variance
among their scores.

Working with more than twenty datasets from different domaind)ave found measures that allow
for separation between datasets on which UFF is effective datasets in which it is not. One such
measure is the normalized entropy of the squares of UFF sthissas well as another measure, is
presented in the supplementary appendix. They allow for a prianagston whether UFF selected
features should be used. These measures, formulated in the supptgmappendix, are

incorporated into our web-tool, providing a confidence level foiinglpn UFF results.
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4.3.1.4 Unsupervised Detection of Outliers (UDO)

Ouitliers are typically defined as instances that diffgmificantly from other instances in the data
(for extensive surveys, see [21, 22]). Detecting such oiktances may be desirable in certain
cases, e.g. when there is a suspicion of faulty or unkellméasurements or for detecting rare
events. A multitude of methods for unsupervised outlier detebave been proposed. Most relate
to one of two approaches: (1) model based, in which a mofikeldghe data and outliers are the
ones deviating from the model [23, 24], (2) Distance-based metiwbdsh find instances lying far
from all instances, nearest instances, or nearby ci@®31]. We present here an alternative
definition and a method to detect such outliers, based doRRgramework.

The data-matrix A contains information on instances indesfrieatures and features in terms of
instances, and the singular values are common to both. &néerefore consider a 'leave-one-out'
measure applied to instances. This is the Unsupervisedtivet of Outliers (UDO) method, to be
studied here. UDO identifies instances that, when remoesdedse the entropy of the dataset and
thus provide a more homogeneous dataset. Recognizing these entrepgimginstances as
outliers provides a natural definition for an “outlier-degré¢DO attaches to each instance the
amount of decrease of the SVD entropy, which is consideregldbal measure of the “outlier-
degree” of each instance in the dataset. As in the U#tRad, a threshold of one standard deviation
(std) above the mean may be applied to assess the nundoehajutliers. UDO is a data-driven
method, making no prior assumption regarding the distribution afateesuch as model-based
methods. It is not restricted by small sample size datagsath prohibit creation of valid
distribution assessments. It is also different from disténased outlier detection schemes in that it

assesses the influence of instance removal on the dataset rather than the mere location in



feature space of the instance relative to other instanceentrast to the Donoho-Stanhel estimator,
which assesses the “outlier-degree” of an instancewelatione selected direction in feature space,
UDO estimates it on all eigenvectors at once. UDO ingbise emphasizes directions along which
other instances are relatively comparable. We note thatasetatof relatively low SVD entropy,

the correlation between the UDO ranking and the popular outliectitst method of the'kNN
ranking [29] is relatively high (0.61 and 0.82 for the melanomatiNddatasets respectively, k=5).
This can be explained by noting that removal of an instanagndatasets does not alter the
leading eigenvectors substantially and UDO thus selectsidheentropy instances that reside
mainly farthest along these eigenvectors. In high SVD entla@sets (e.g. the two microRNA
datasets in this paper), the correlation between theliffevent methods is essentially zero.

Since outlier defining criterion and the methods implementing thaerintertwined, evaluation of
each method turns often into subjective inspection of the utlide note that in the HIV dataset for
which we have some clinical information, the first 4 stdd instances (out of 5 selected by UDO)
are samples of two individuals (containing both CD4+ and CD8ell§)c The two leading outlier
instances belong to the same individual, possessing an Hidtiorfeat a very preliminary stage (~1
month), possibly explaining high divergence of measurements fidividuals with longer periods

of HIV infection.

4.3.2 Selected Datasets

In this section we present novel results obtained by applyingttJgEne-expression and microRNA
(miRNA) expression datasets.

4.3.2.1 Melanoma — UFF selected genes

The melanoma dataset is used for demonstrating the diffeaéatdf UFF. Running UFF on this
dataset, we obtain 231 genes. The top ranked genes inclatérSteratin 14, Keratin 1 and
Loricrin, mutation in which are related to skin cancer athr skin diseases [32-35]. Enrichment
analysis includes terms having Bonferroni score<0.05. GO Eneichamalysis of the selected genes
includes functions of biological processes such as ectodetradermis development, homophilic
cell adhesion, keratinocyte differentiation and melaninyitigetic process. Cellular compartments
enrichment includes intermediate filament, extracellulaoregnd melanosome. Interestingly, GO
molecular function enrichment show various metal ion binding, inafudopper, cadmium and
calcium, all having relations to the tumor suppressor proteirj3#®38]. Enriched pathways include
cell communication, antigen processing and presentation andraksst cancer estrogen signaling.

Human phenotype analysis reveals enrichment for palmoplantar hygtedier keratinization, skin



and integument abnormalities. The list of UFF selectedsgisnarovided in supplementary Table
S2. The full list of GO enrichment terms is provided in sep@ntary Table S3.

Talantov, et al. (2005) performed clustering analysis orditiaset, using a filtered list of 15,795
genes. They did not obtain perfect separation between medasnadrbenign tumors or normal
tissues (obtaining Jaccard score [20] of 0.74). Using UFFtedlgenes and the Quantum Clustering
algorithm [39], we were able to correctly split melanonaarf benign tissues, while identifying two
clusters in the melanoma samples similar to the onesifidd by [10] (Jaccard score of 0.85)32 of
UFF selected genes appear also in the 439 differengigfisessed genes of [10] (p-value ¥)eand
10 out of 33 differentially expressed genes with high fold cedpeg/alue<é?).

Figure 5 compares the clustering results in terms alldscore using UFF selected genes for
different thresholds, with genes selected using varianaejreeentropy and random selection and
using all the genes (see Methods). It is evident that U&tres provide better clustering results
than either selection method or compared to using all the gemalsthresholds (with an exception
for the top 10 genes, where variance selection has glightier Jaccard score). Error bars were
removed for clarity. Supplementary figure S1 displays theessamparison with error bars.

Quantum Clustering results are provided in supplementary Table S4.
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Figure. 5. Mean Jaccard scores of clustering results for iffeselection methods on the melanoma datasded egethods include (; UFF,
(B) Variance, (C) Feature entropy, (D) Random g&aand (E) All features.



4.3.2.2 HIV — UFF selected genes

Next we explored the HIV dataset. UFF selected 179 genddjrenas to cluster the CD4+ and
CD8+ samples into separate clusters with only one misfitadgn. In comparison, when we
clustered the samples using all the genes 2 misclaggifis were obtained. In the top ranking genes
we find mostly hemoglobin units, but also the specific CD4¥ klated protein defensin [40] and
the CD8+ HIV related CD8 antigen [41]. GO enriched biologratesses for the 179 selected
genes (Bonferroni<0.05) include immune system process, immune respeltislar defense
response, antigen processing and presentation of peptide anédédrC class | and class Il.
Cellular compartments are enriched for the MHC claselllbprotein complexes. Non trivial
enriched pathways include Graft-versus-host disease, nkilleatell mediated cytotoxicity and
type | diabetes (Bonferroni<®) The selected genes involved in the type | diabetes patargay
usually in direct connection with either CD4+ or CD8+ T-€llhis connection is strongly support
by literature text mining (not shown). The list of selectedkegds provided in supplementary Table
S2. Enriched terms are provided in supplementary Table S3.

Similar to figure 5, supplementary figure S2 displayspdormance of clustering the HIV
instances using different gene sets, selected by various uwisepgdeature selection methods,
random selection and using all the genes. The performarngieFosurpasses all other methods in

terms of clustering results (see Methods).

4.3.2.3 Chronic Hepatitis -C — UFF selected genes
The CHC database is intended for inspecting results of chinepititis C (CHC) treatment with

interferon. UFF selected 513 genes. Using these seleated,gee were able to separate perfectly
pre-interferon and post interferon blood samples. Liver biopsagever, were clustered according
to sample origin instead of pre and post interferon treatmbatcllstering results are different
when using all the genes; in this case, liver samples cmilde separated at all and blood samples
typically split into different clusters. This is displayedFigure 6. The relevance of the gene selected
is demonstrated by the GO enrichment scheme. The GO celtutgrartment contains various
lipoprotein particles (high-density, plasma, spherical high-tertsiglyceride-rich, very-low-

density and intermediate-density). Biological process enrichmelndes lipid metabolic process,
along with regular defense system terms, such as acwmimgtory response, response to
wounding and response to xenobiotic stimulus and metabolism of xenslgtaytochrome P450
pathway, possibly related to the Interferon treatment [4@]ediched human phenotype is
generalized amyloid deposition, which is reported to reateepatitis C [43]. Finally, using the
Comparative Toxicogenomics Database (CTD) the UFF seleygnes are enriched for Hepatitis

and the related immune complex diseases. UFF selectesl geth@nrichment analysis are provided



in supplementary tables S2 and S3 respectively. Clusteringsragpear in supplementary Table
S4.

Supplementary figure S3 compares the performance of clustéengldpatitis-C instances using
UFF selected genes with gene sets selected by various unsagefeature selection methods,
random selection and using all the features. The performanceFofigiin tops other methods in
terms of clustering results.
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Figure 6. Clustering of the 78 samples of Hepatitis C daferelative to known labeling. -axis denotes cluster number an-axis
denotes division into pre-interferon liver biopdyPR), post-interferon liver biopsy (LPO), pre-irfmon blood sample (BPR) and
post-interferon blood sample (BPO). Clustering wagormed using botk-means (k=4) using UFF selected genes (A) and wing
genes (B) and by using Quantum Clustering using §#é&cted genes (C) and using all genes (D)

4.3.2.4 Glioblastoma — UFF selected genes

We present results on glioblastoma multiforme (GBM) from Tarc&r Genome Atlas (TCGA)
project. We selected features from each platform independdo#yto the difference between
experiments, allowing for identification of genes that diffitiste between different platforms,
rather than different instance type (UFF was applied iteA§54502A_07_1 and
AgilentG4502A_07_2 separately, to avoid selection of genes tbhatsafierfect separation of the
two platforms). The unsupervised approach displays its fuligtingn this case, since we do not
have access to additional sample information on thesseatsta

Based on UFF selected genes, we clearly identify clogtef the instances in each dataset into a

small number of groups. As clinical details of the subjassnot specified, we cannot link these



clusters to known labels. An example of the clustering refoitone of the GBM datasets is

displayed in Figure 7. Clustering results of selected det@se found in supplementary Table S4.
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Figure 7. Clustering of 54 samples of GBM Agilent G4502A_Q7.2.0 array, colors and shapes denote diffaiesters. Image
displays projection on principal components 2-4

There are variations between the number of genes selecfggllent and Affymetrix gene
expression platforms (563 and 731 genes for Agilent 1 and ?pref while only 140 for
Affymetrix).

We focus on the list of 44 genes, which are common to batfophs. 13 genes from this list also
appear in the list of top 100 primary glioblastoma-associgeeés expressed at higher levels
compared with normal brain tissue [44]. We note also that 8faupatented markers for
glioblastoma (patent #7115265) appear on this common list (theattter, ABCC3, appears in
genes selected from Agilent 2 platform). The top 10 gewas fhis list, in terms of minimal UFF
rank, are displayed in Table 3. Supplementary Table S5 providEedeixplanations on relations
to cancer biomarkers. UFF selected genes and the 44 cogenes appear in supplementary Table
S2.

Although Agilent and Affymetrix datasets show high variancénnumber of genes selected by
UFF, the highest GO enrichment terms are common to both.dBotw high GO enrichment of
general biological processes such as regulation of multicetitg@anismal process, cell proliferation
and nervous system development (Bonferroni<0.05) and nervous sjestetopment in Affymetrix,
(FDR<0.05, but Bonferroni <0.1). UFF selected genes on Affiyriaiso show inflammatory

response while UFF selected genes of Agilent are enrfoheell adhesion. Both platforms are also



enriched for cellular compartment of extracellular matrig both were highly enriched for ‘signal
peptide’ and ‘secreted’ (Bonferroni<0.0005) based on UniProt keywdfels selected genes on

both platforms are enriched for molecular function of proteinraoélptor binding, which includes
various ligands such as polysaccharide, heparin and neuropeptidene activity binding (Agilent
platform), and lipid and ferric iron binding (Affymetrix platm). Enrichment analysis is provided

in supplementary Table S3.

Table 2. Top 10 ranked genes, selected on all platfornglioblastoma multiforme. Genes with asterisk app@athe list of [44].
N.D = Not Determined

Gene name Minimal UFF Related to Cancer
rank across Biomarkers
platforms

RPSAY: 1 N.D

SEC61( 1 Yes

POSTN (* 2 Yes

ECOF 7 Yes

TMSLS (¥) 9 N.D.

SERPINA3 ) 10 Yes

COL1A2 (*) 12 Yes

NPTX2 13 Yes

TIMP1 (%) 14 Yes

VSNLL 17 Yes

4.3.2.5 Ovarian Serous Cystadenocarcinoma — UFF selectedrgs

We performed similar analysis of the glioblastoma maitife (GBM) datasets on the ovarian serous
cystadenocarcinoma (OV) dataset from TCGA . UFF selectaib6®98 genes from Agilent and
Affymetrix platform datasets respectivelyO enrichment analysis reveals that UFF selected genes
expose very similar GO terms as UFF selected genes dh GB

The first interesting exception is cellular compartment émment in which OV shows enrichment

for collagen and fibril, which are identified as predictansdvarian cancer [45], [46]. An

enrichment term which includes arthritis and osteoarthrio$ $pecial interest, as the former was
postulated as a marker for ovarian cancer [47], whildsatiee has not been determined. Finally,
enriched diseases show stomach and breast neoplasms. Enriahalgsis is provided in
supplementary Table S3. Clustering of the samples accordihg tdFF selected genes is provided
in supplementary Table S4.

190 genes are common to both Agilent and Affymetrix platforrabler3 lists the top 10 common
genes in terms of minimal UFF rank. Supplementary Tabler@bdes detailed explanations for
Table 3. List of UFF OV selected genes and the 190 platéhiamed genes are provided in
supplementary Table S2.



Table 3. Top 10 ranked genes, selected on all platformmafian serous cystadenocarcinoma. N.D = Not Deted.

Gene name Minimal UFF Related to Cancer
rank across Biomarkers
platforms

IGF2 1 Yes

HOXA4 2 Yes

POSTNMN 3 Yes

LMO3 5 Yes

ZIC1 7 Yes

HOXA9 8 Yes

PCP- 8 N.D

OVGP1 9 Yes

PON: 9 N.D

CXCL1 10 Yes

7 of the UFF selected genes are common to both GBM and OV. TieeBO&TN, NPTX2, GJAL,
NNMT, CSRP2, SCG5 and HSPA1A, all of them related to camioenarkers. Supplementary table
S2 provides further details on relation of these 7 common genemtercbiomarkers. Note that
POSTN appears in the top 10 selected genes in both GBI@dnthtasets.

4.3.2.6 Selected miRNA for GBM and OV

We also report UFF selected microRNAs (miRNA) from TC@&roarrays for the glioblastoma
(GBM) and ovarian (OV) cancers. There are 534 miRNAGEM, taken from 325 samples and 799
mMiRNAs taken from 295 OV samples. UFF selected 43 andiB8IAs in GBM and OV
respectively.

Almost all of the UFF selected miRNAs are human miRK#\gergeometric p-value=0.003 and
0.05 for GBM and OV respectively). The selected miRN#&sGBM and OV are enriched in
comparison to [48] list of up or down-regulated miRNAs relativaormal tissue (15 and 20 genes,
corresponding to p-values of 7*1@nd 9*10° for GBM and OV respectively). In comparison,
negative entropy miRNAs are not enriched relative to isis |

12 of the selected miRNAs appear in both GBM and OV tumors. Treeyisded in Table 4.
Supplementary Table S6 provides further details on relation sé ttieRNAsS to cancer biomarkers.
Selected miRNAs for GBM and OV are also listed in supplatary table S6.

Table 4. MicroRNAs selected by UFF, common to GBM and OV.

L up or down-regulated microRNAs relative to noriggue according to {Lee, 2008 #53}

2 MicroRNAs that affect the properties of cancelscatcording to {Lee, 2008 #53}

3 down-regulated in ovarian cancer {Lee, 2008 #53}

4 Differentially expressed miRNAs in ovarian cantissues and cell lines {Dahiya, 2008 #230}.
N.D = Not Determined.

microRNA Minimal Related to Cancer
UFF




rank Biomarkers
hsa-mir-181d 3 Yes
hsa-mir-363 4 N.D
hsa-mir-210? 6 Yes
hsa-mir-451 7 Yes
hsa-mir-10a 7 Yes
hsa-mir-3% 8 Yes
hsa-mir-196& 8 Yes
hsa-mir-145%3 10 Yes
hsa-mir-1354 11 Yes
hsa-mir-106"2* 11 Yes
hsa-mir-10b*2* 11 Yes
hsa-mir-31* 12 Yes
hsa-mir-424' 18 Yes
hsa-mir-155"* 20 Yes
hsa-mir-2222 25 Yes
hsa-mir-30a** 26 Yes
hsa-mir-517* 31 N.D

4.4 Conclusions

We present an improved method, and a new web tool, thaeemsdals to benefit from the power of
UFF, an unsupervised approach that scores and ranks each Badording to its influence on the
singular values distribution.

A statistical characterization of the selected featahesvs that our method selects features of high
variance (over instances), but only those that do not hawe dargelation only with the first
principal component. It turns out that thus we ignore noisy featiiatsave Gaussian distributions.
The strength of our method lies in selecting features thhtdagiture inherent clustering of the
instances and possess high variance. The combination efdhe significant in the case of
biological datasets such as expression microarrays.

By studying various empirical datasets and evaluating diffescoring functions we show that our
approach is generic, and can identify the subset of relézatutres. In contradistinction to other
methods we can estimate the size of the group of selesteadnt features. Furthermore, we present
a novel approximation method, enabling significantly fastemutation of the UFF feature scores.
UFF is a heuristic method which exposes its strength irstiespplications. Nevertheless, not all

datasets are amenable to feature selection by UFF. We progesia for deciding when UFF



application is effective. This information is also providedhia online UFF tool. We further extend
the capabilities of UFF by introducing the Unsupervised Detedti Outliers (UDO) method. UDO
provides a novel definition of an “outlier-degree” of an instaand identifies such outliers in the
dataset. This enables the researcher to detect rarts @vehe dataset or filter faulty instances before
proceeding with further analysis.

Finally, we analyze various gene expression and microRNA expmesdatasets to show the strength
of our approach and to expose interesting findings on these datétbgtessible biological

relevance.

Web tool:http://adios.tau.ac.il/UEFizi
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4.7 Appendix

4.7.1 Connection between projection on first princi pal component and
negative entropy score

One can prove that in the extreme case, where a featiyiegsonly on the first PC, it is bound to
have a negative score. We shall now prove it for the SVIntfunction. This proof can be
extended to cover also the alternative measures meniiosedtion 4.2.2.

Starting with the positive-definite Gram mat@x defined as

C AA VSV 9)

for the data matrix A of M features by N instances (whesghout loss of generality we assume
N M). We use the eigenvalues of the Gram matrix, defined bys’ to define:

C N N
o=, T ¢, K ¢ log(c) (10)
T i1 i1

T is positive definite. SVD entropy can be relate& tihrough
N
H log( ) K log T (11)
i1 T
where, for simplicity, we dropped the normalization constant Kpg(n the definition ofH.
Consider the small perturbation of adding one feature to the nfatiike assumption of a small



perturbation generally holds for a large enough number of featusegy elquation (7), we can write
the resulting change éf as

TdH dK (1 %)dT (12)

If an added feature projects only on the first PC, it denge only the first singular value. It follows
then that

dT dg, dK -d¢( log ¢) (13)
Plugging the terms in (9) into equation (8), we arrive at
TdK (T K)dT

TdH d?CL(K Tlog g) O (14)

T
which means that adding such a feature always leads toimedatentropy.

To complete the proof we show that the right hand side is inds=gative. T is positive, and so is the
sum of the two terms in brackets, sirgeis the leading eigenvalue and the following inequality
holds:

K c;In(c) Tlog(c) (15)

1

We now prove thadc,>0. Note that, by definition,
dc Vi Gon Vi (16)

mn “ni
m,n

The first order perturbation of the eigenvalue€a$ related to the change of the original ma@ix
by the original unitary transformation This follows from the unitarity constraint &h

av,v, 0 (17

mi "mi

and is the discrete analog of the Hellman-Feynman thel@@m50], [51].
Adding a row toA, i.e. adding the feature vectdf** of sizeN, the Gram matrixC changes to
C c, frrfn? (18)

mn mn

Plugging it back into equation (12), we conclude the proof with showiagdc, is positive
according to:
2

dc 7V (19)

where V is thei-th eigenvector o€.
Adjusting appropriatelyS and K, it is easy to prove this also for the sum of squares and the
geometric mean functions mentioned in section 4.2.2.

4.7.2 When is UFF applicable?

We present two measures that allow for a separation betvedasets on which UFF is effective,
from those in which it is not. The first is SE, an entropy-likeasure on normalized squares of UFF
score-values.

Scorg
w k M ) (20)
Score
1 M
——  wlog(w) (21)
log(M) \

and the second is VE, an entropy-like measure on the variahms\(@ae. variance of feature-values
on all instances)



Var(f,)

Zeo T (22)
Var(f,)
1 M
———  Zzlog(7) (23)
logM) 1

Suitable datasets can then be defined as those lying belowndbresholds in both measures. We
tested more than a dozen 'suitable' and ten 'not-suitable' dafasétshown) using UFF and

clustering algorithms. It seems that combining the two messisiag the geometric mean provides
the best test for applicability. We found 'suitable’ datasetge below a threshold of 0.8 of the

combined score.

4.8 Supplementary Material

Tables S1-S22 of the supplementary material are fouhtign/adios.tau.ac.il/UFFizi/supp/
and on the attached CD.
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Figure S1. Comparison of UFF with other selection methodstlue Melanoma dataset. Jaccard scores of clusteesigts for
different selection methods on the melanoma datdssted methods include (A) UFF, (B) Variance, f&ature entropy, (D)
Random selection and (E) All features. Error bansade standard deviation across different k-meansQClustering of 54 samples of
GBM Agilent G4502A 07_1.4.2.0 array, colors and pg®a denote different clusters. Image displays ptioje on principal
components 2-4
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Figure S2. Comparison of UFF with other selection methodshenHIV dataset.

Jaccard scores of clustering results for diffessiection methods on the melanoma dataset. Testéubds include (A) UFF, (B)
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Figure S3. Comparison of UFF with other selection methodshenHepatitis-C dataset.

Jaccard scores of clustering results for diffessiection methods on the melanoma dataset. Testéubds include (A) UFF, (B)
Variance, (C) Feature entropy, (D) Random selecéind (E) All features. Error bars denote standadation across different k-
means runs



Part 2

Chapter 5

Extraction of Common Peptides (CPs)

5.1 Introduction

The analysis of protein sequences forms a valuable tool ieipfoinction prediction. The primary
method for sequence analysis is sequence similarity detetgmcally implying homology, which
may further imply structural and functional similarity. Mangtimods focus on pairwise or multiple
sequence alignment [1], [2], [3], [4], [5]. Sequence aligninpeovides a distance metric that enables
relating an un-annotated protein to a close annotated prattEnprotein distances may also be
used for forming a vector of features describing the protdiich can then be exploited for the task
of classifying them [6]. Other methods extract alternatagres from protein sequences, including
number count of different amino acids in the sequences @ised AAC — Amino Acid
Composition [7] ) or using the physico-chemical propertieb®famino acids [8, 9].

Another alternative to the standard sequence alignment idethéfication of sequence maotifs.
Properly chosen motifs are expected to focus mainly on keynem the protein and thus reduce
noise from other regions. These motifs can span a fegpace in which proteins may be
represented and compared. Conventional motif extraction apy@®aonstruct motifs in terms of
position-specific weight matrices, or use hidden Markov model8agédsian networks, hence are
supervised to some extent [10, 11].

MEX is a motif extraction algorithm that serves as th&danit of ADIOS [13], an unsupervised
method for extraction of syntax from linguistic corpora. MEXra&sts motifs from sequence data of
proteins in an unsupervised manner, without requiring over-repatigenof its amino-acid motifs

in the data set. MEX motifs are deterministic stsiingcontradistinction to position-specific weight
matrices or regular expressions. Based on MEX extractedsir{@®] have introduced a method for
classifying enzymes based on Specific Peptides (SPs).

In the SP method, motif extraction was carried out in anparsised fashion as a first step,
followed by supervised selection from the resulting motifoading to their specificity to levels of
the Enzyme Commission (EC) 4-level functional hierarchy.

The extraction of Common Peptides (CPs) utilizes MEX infemiht manner. Instead of applying

MEX to all sequences in an unsupervised manner, we apply iNlBXupervised fashion to



individual families of proteins, which may be families akgmes belonging to certain EC numbers.
Further processing is applied to the resulting set of myati€luding selection of motifs containing
more than 4 amino-acids and elimination of degeneracy bgviegnmotifs that contain other

motifs. This defines a set of Common Peptides (CPs) diesiing the protein family. As opposed
to the Specific Peptide methodology, there is no requirerhanhtiie motifs will not be found in
other protein families in the training set. The distributdiCPs in the protein family, however, is
easily distinguished from the distribution outside the protemiljawhich highly resembles a
random model. This is exemplified in section 5.1.1.

The protein family characterized by the set of CPs mastuzéed in several directions. The CPs
constitute an inter-family conservation signal, often oyilag functional sites on the protein [14].
The first direction is to use the CPs to map important dwsran the protein sequence which may
have functional significance.

A second direction is to use search methodology in order idedetether a queried protein
belongs to the same family, on the basis of the CPsaatid coverage of a given protein sequence.
This task has a clear advantage over sequence simitettyods in the arising field of
metagenomics, where only segments of DNA are provided, rexgdie use of sequence alignment
doubtful.

A third direction defines a feature space spanned by tHestCBsing this feature space, we reveal
intra-family clusters, related to different functionalityevolutionary events during the development
of the protein family. A final direction involves reconstroctiof CPs on a given phylogenetic tree,
tracking ancient genomic evolutionary events in the histotlzeprotein family.

We present and example of ThyA and ThyX enzymes in sectloh t&. demonstrate the CP

framework.

5.1.1 ThyA and ThyX: an example of CP methodology

ThyA is the classic thymidylate synthase family. Organisinas lack thyA possess an alternative
unrelated enzyme, thyX, performing the same function. A smaiber of organisms possess both
thyA and thyX. We have analyzed data [15] containing thyA sequdramas?98 species and thyX
sequences from 136 species. Only 13 species have both enzymesXigtgXalmost exclusively in
Bacteria, while thyA reside in all kingdoms.

MEX was applied to the thyA and thyX sequences, extracting fdr g@e of enzyme its CPs. 313
and 168 distinct CPs were obtained for thyA and thyX respectivelgring 297 and 133 sequences

of the two types of data, i.e. occurring at least once on thare98% of the data. Species lacking



CPs may have very divergent sequences from all other spaciespecially interesting case is that
of Bacillus thuringiensis, containing two thyA enzymes and lackiRg. Other species lacking CPs
of thyX enzymes aré&. denitrificans S. wolfeiandM. thermoacetica

ThyA enzymes share a motif known as Prosite signature PS00091s &higrge motif, containing
8-13 non-specified amino-acids in the middle. CPs of the thyA enzgmneef®ound to cover each of
the two parts of the Prosite motif separately. ThyX enzysimese the motif RHRX7S [17]. The
RHR prefix of this motif exists on seven of the CPs okthy

Figure 1 display an example of a thyX sequencB.obiscoideumand the list of CPs covering it.
Nine CPs have hits on this sequence (shown in red). Two pair®®ofa@ overlapping on this
sequence. Each member of these pairs can be found without ntsppirey companion on other

sequences. The amino acid coverage of this sequence is #biifther of red characters in figure 1).

Found 9 hits

Peptide | Location
ARVSYG |67
DKGLI 81
LIRYL 84
ARQWIRHR (113
RHRTA 118
SARYS 128
YIEWYW [205
DLHNL 213
FLRLR 220

Mapping the peptides on the protein sequence

Red characters denote the location of the Peptide Matches

————————— i s it T et s s e e bttt B 3
MGLDIQTEIDEIVIERVKPEVEYYDVHMGGSHRWEVEVHDHGEVALVDTHPRLAPVGQTADFSICQAARVSYGAGTREVTEDEGL IRYLYRHQHTSPFEMY
EFKFHCVMPVF IARQWIRHRTANVNEY SARY SVLPDKFYHPSIEEVREQSTSNRQGGEEALEPETAQEFLDYLDEVEENYKTYNELLERGLSRELGRIGL
PVSIYTEWYWRIDLHNLFHF LRLRMDSHSQREIRDYANTIFALIRPIVPVACEAFIDYAFESLELTRLEIEAIRTGSPLNTITNEREIEEFEERKELLFPN
TQA

Figure 1. An example of a thyX sequence and the nine CRerw it. The sequence is displayed in blue ardGPRs hitting it are

marked in red.

5.1.1.1 Coverage by CPs

We have studied the occurrence of CPs (number of hits) on ersaeuences of the training set,
and compared it to the occurrence of the same CPs on udrefagmes. Since CPs have not been
selected according to specificity to a particular EC numlbery tmay be found on sequences of
enzymes whose function is unrelated to that of the family fiehich they were extracted.
Nonetheless the occurrence distribution, as shown in figure 2,yidifeerent. Figure 2 compares
the distribution of thyX sequences, covered by various number sf &Pdisplayed in figure 2,

most of the thyX sequences have more than four CPs hitting thikere some have up to 31 CP



hits. In comparison, unrelated enzymes may have one CP hitarhygtwvo hits. These numbers are
consistent with a background random model, which randomly permutes tbmpiid searches for
matches of CPs on this permuted set. Within the family of motéom which the CPs were

extracted, one finds characteristically many CPs (avesdde in the case of thyX) on the same
sequence. Similar results are observed for thyA (not shown).
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Figure 2. Number of CPs observed on each of the thyX sempse(), is compared with the observation on

sequences from all other enzymes (B), and withahatrandom model (C). All three cases are nomedlito
total area = 1.

5.1.1.2 Biclustering of thyA and thyX

We provide here an example of the feature space spannee 6% tlst. Applying biclustering to the
matrix of speciess CPs of the thyX enzyme we obtain the results display&dure 3 (for
explanation of the bi-clustering algorithm, see section 6.A.8)ear biclustering pattern can be
observed, with some CPs being intermediaries (i.e. conngbitgeen two or three clusters of
organisms.

Next we apply the same procedure to the thyA data. The restutten in figure 4, have completely
different behavior: the clustering pattern of the thyX dataot observed in the thyA data, where



most species are contained in one large cluster. Thisogmest that thyA evolved in a different
way from thyX, e.g. thyA could have evolved from a singimmon ancestor protein, whereas thyX
may have evolved from different origins. It is interesting@bserve that the similarity of thyX
sequences is much smaller than that of thyA ones (me#h-Bfaterman alignment e-value for
thyA is 8.5e-6, while for thyX it is 0.007).
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Figure 3. Biclustering of the matrix of species (rows) BgJcolumns) of the thyX data
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Figure 4. Biclustering of the matrix of (rows) vs CPs (awolos) of the thyA data.



While thyX species form CP-disjoint clusters, thyA specidgddiorm such disjoint clusters. It is
interesting to note that these statements hold also foolhéaterium and Corynebacterium families
that contain both thyA and thyX enzymes: while their CPs foX thglong to a disjoint set, their
thyA CPs are shared amongst multiple species (not shown).

Some of thyA and thyX species (72 of the former and 37 datter) appear in the tree of life (ToL)
constructed in [16]. The tree of life is a tree connedtiiffgrent species according to phylogenetic
relationship of key genes that are common to all those expeet The CPs can be reconstructed on
the tree and see if the inter-species relationships ntactloftthe tree, based on sequence alignment.
In addition, CPs connecting remote branches of the tregpmayto lateral gene transfer (LGT)
events.

The same biclustering algorithm can be applied to specieaicmg thyA and thyX that appear on
the ToL. We compared the clusters found for thyX sequencssngxon the tree with the positions
of their species on the ToL [16]. The results are display&igure 5.

Most of the clusters correspond to species families ocewjaspecies on the ToL. There are three
exceptions (clusters 1, 6 and 10) containing species whicr laphirt on the ToL. The notably far
species on cluster number 1 is D. Discoideum, the only Eukatgoten to contain thyX. The
closeness in CP space suggests the occurrence of aagBifbetween the Treponema family and
D. Discoideum. This speculation is supported by the anadf$i$], who argued that D.
Discoideum and Treponema subtree share a close ancestor. Ana@hmgie is in cluster 10, where
D. vulgaris, C. perfringens, G. sulfurreducens and B. ceters £P space similarity, although far
apart on the tree. This is also supported by [15], wherestiay homologous LGT between the
Clostridia and delta-proteobacteria groups and proximity dbatl species on their constructed
phylogenetic tree.

Interesting results are also obtained on species containiAghhyappear on the ToL (figure not
shown). While vertebrates cluster together, other eukaryotearappdifferent clusters, sharing no
or few CPs with the vertebrates (e.g. C. elegans,dlamogaster and S. cerevisiae are on one

disjoint cluster and O. sativa and A. thaliana on another).
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Figure 5. Location of the thyX species on the ToL (y-axis)aafunction of the location calculated accordingte bi-clustering
algorithm. The analyzed species are a subset obties in figure 3, because many of the latter wateincluded in the ToL.
Rectangles denote clusters.
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Chapter 6

Common peptides shed light on evolution of Olfactor y Receptors ®

6.1 Background

Odor recognition in vertebrates is mediated by a large supé&rfaflfactory receptor (OR) genes,
G-protein coupled receptors (GPCRs) with seven trans-membrane dgftjaj2$ Whole genome
studies discovered hundreds of intact ORs in the vertebratenge ranging in size from ~100 in
fishes to ~1000 in mouse [3-6].

A recent study of OR evolutionary dynamics indicated the existehnine ancestral genes common
to fish and tetrapods, of which only two are found in birds and masn®pecifically one of these,
known as Class Il, has expanded enormously in mammals [7]. Sestachés have applied
computational sequence analysis and phylogeny methods to study theoevolutie OR repertoire
in vertebrates [7, 8]. One of these studies [9] used maiifanalyze human and mouse OR
repertoires, focusing on classification of the motifs inassés and classification of the ORs using
these motifs as features.

We adopt a different motif-based approach that extracts deistimimotifs, i.e. peptides, and
explores their appearance along OR evolution. We apply the mtticgon algorithm MEX [10],
the efficacy of which has been previously demonstrated in the sfuglyzymes [11] , to 4027 OR
sequences of 10 vertebrates. A short explanation of MEX is alseded in the Methods section.
The union of all motifs leads to a list of 2717 MEX-derived peptittebe referred to as Common
Peptides (CPs). These motifs can be mapped onto specific locaticdhe seven trans-membrane
domains.

Following CP occurrences on ORs of different species we eae tthe development of these
domains with evolution. Using the Tree of Life, we performaanestral reconstruction of CPs and
determine their evolutionary ages.

For each species we perform biclustering of the matrix ob&Rirrences on ORs. Choosing CP
groups according to their evolutionary age we get differentesing patterns.

The use of CPs for studying OR sequences enables us to explererdifispects regarding OR

evolution than those uncovered by phylogenetic methods. It also snabl® uncover some fine

8 Based on the pap&ommon peptides shed light on evolution of OlfacReceptorsAssaf Gottlieb, Tsviya Olender,
Doron Lancet and David Horn, BMC Evolutionary Bigio2009, 9:91.



details of OR groups that were previously studied using regulaessipn motifs, due to the
deterministic nature of our motifs (see also [12]).

6.2 Results

6.2.1 CP mapping on the Tree of Life

We used 4027 OR sequences representing the complete intact ORinepen 10 vertebrates

(Table 1). We extracted a list of CPs by applying MEX to G#gusnces of each species
individually, followed by a unification procedure to remove redunddseg Methods for a detailed

description).

All CPs are tested for their occurrence on all ORs, iresme of which species lead to their
extraction. We definspecies-specific CRs CPs observed only in one species.

On average an OR is matched by 48 CPs, covering 147 amino acitdsseguence. Some CPs
partially overlap with one another. The total number of CPs founsegquences of one species
(column 3 in Table 1) is highly correlated (Pearson correlation =v@tB)the number of ORs per

species (column 2 in Table 1).

Table 1 Distribution of 3983 OR sequences, total CPsspaties-specific CPs according to species

Species  Number Number  Number of Percentage of
of ORs of species- species-specific
observed specific CPs CPs
CPs
Pufferfish 44 193 11 5.7%
Zebrafish 97 352 60 17.0%
Frog 409 1179 143 12.1%
Lizard 120 945 17 1.8%
Chicken 78 644 15 2.3%
Platypus 250 1406 26 1.8%
Opossum 846 2030 48 2.4%
Dog 814 2083 40 1.9%
Mouse 978 2179 66 3.0%
Human 391 1889 8 0.4%




The percentage of species-specific CPs is particularlyihifigh and frog (although less than 6% of
the pufferfish CPs are pufferfish-specific, the percentagésbfspecific, including both fish, is
18%). The percentage of species-specific CPs drops saymtificto an average of 2% in other
species, with human having the smallest amount of speciedispgees. This finding might be
attributed to the difference between aquatic environment, drasdic of fish and the amphibiang

X. tropicalis that remains aquatic also in its adult life (see [13] and [1d4Rd terrestrial
environments characteristic of the other species: presum@bBly were lost - together with their
ORs (groups, , and in [7])— in terrestrial species that have developed.late

We evaluate the emergence and loss of CPs on a commadpted tree of life representation
(figure 1), using the parsimony method (see details on the choskadvaetd other tested ancestral
reconstruction methods in the Methods section).

We identify 'novel CP% as those that exist in the current ancestor/species but didxisbtin
previous ancestors, anthbst CP$ as those that do not exist in the current ancestor/speciekdout
exist in the previous ancestor. CPs that date back to premmestors are referred to aofiserved
CPs”.

The analysis detects one major addition of novel CPs in thestmoof tetrapods, A2. Judging by
[15] the branch length between Al and A3 is about the same as tilvatbheA3 to A6. 47% of the
CPs at A6 are novel with regard to A3. This should be compatbdive fact that 75% of CPs at A3
are novel with regard to A1. We thus may conclude that the mxgension of OR CPs has taken
place at, or before, A3.

Reptiles have suffered major losses of CPs, a trend tretustaer increased in chicken. Another
major loss occurred in pufferfish.

Interestingly, while humans lost more than half of their Oftative to other mammals, they lost
only 11% of the CPs existing in A6. This suggests that some radeydn mammalian ORs has
been removed by OR pseudogenization in human. This result is surposisigering the fact that
the human intact OR repertoire contains much less subfamglas/e to other mammals (according
to HORDE classification system [16]). For example, eéreme 242 and 227 subfamilies in mouse and

dog respectively, but only 175 subfamilies in human. Investigatibamilies of mouse and



Figure 1. CP reconstruction on the tree of life. Numbe€&¥s occurring in each species and parsimoniougiy&sd number of CPs
occurring in each ancestor (in ellipses). Numbersrackets indicate the percentagenofel CPselative to the total number of CPs
in the current node (+ sign) and the percentadestfCPsrelative to the total number of CPs in the presiaade (- sign). Over 20%
gains are colored green and lost are colored redegtor names are enumerated from the most reneestar of fish and tetrapods
(A1) to pufferfish and zebrafish ancestor (A8). #&sexample, zebrafish contains 97 novel CPs, whictstitute 28% out of its 352
CPs. It also lost 57 CPs, which occurred in itseatar, which constitute 18% of the CPs existing&n



dog ORs that are not matched by human subfamilies, we nonethietessahy of their CPs (68% of
mouse CPs and 35% of dog CPs) elsewhere in. other human subfamitéser words, according
to the CP perspective the similarity between human and mowk®as larger than observed by the
sequence similarity which is the basis of the subfamily ifleaons. [17] hypothesize that the
reduced sense of smell in human could correlate with the loss cidital genes. The high co-
occurrences of CPs in functional human, mouse and dog geneshbimnéer, that the reduction of

the human OR repertoire may not necessarily cause losaaiidnality.

6.2.2 CPs that make a difference

The CP method extracts CPs that bear statistical significinsegeasonable to assume that some of
them also have biological significance. We first looked for @Rs differentiate between water-
dwelling species (i.e. pufferfish, zebrafish and possibly)feswl purely terrestrial species. We find
10 CPs that exist in fish (one of them occurs also in frog) bunrenty other land-dwelling species.
Similarly, we find 44 CPs which are terrestrial specifiorfe of them exist in frog). Of special
interest are CPs that reside in the outer region of the mamfeatracellular loops and the external
half of the transmembrane domains). Such CPs might participiggand binding. Table 2 lists the
CPs residing only in water-dwelling species. CPs that patBnplay part in ligand binding are
marked. Of particular interest is the CP "RLPLCG", whiekides on the extracellular loop 2 and
contains a Cysteine, possibly crosslinking with another Cystairthe ORs.

Table 3 lists the CPs residing only in terrestrial speci#*s that potentially play part in ligand
binding are marked. More than 2/3 of these CPs occur in ORs thagh@edominantly (more than
40% of the total OR occurrences) to one HORDE family.

Table 2 CPs specific to water-dwelling species. CPs fatie extracellular side of the membrane are id.bol

# of
CP Domain occurrences

RYILF T™2 15
YGATGFYP T™2 6
AGFFPR T™2 11
LAYDRL IL2 9
YHSVM IL2 10
RLPLCG * EL2 17
KFMQTC IL3 8
ALKTC IL3 16
QTCVPH IL3 16
PPILNPL T™7 13




Domains start from the N-terminal (N), through Transtheane domains 1-7 (TM1-TM7), Intracellular loops1dIL3) and extracellular loops (EL1-
EL3) and end in the C-terminal (C)

* - appears also in frog

Table 3 CPs specific to land-dwelling species. CPs fatiregextracellular side of the membrane are in.bold

# of
CP Domain occurrences

NHTTV N 30
QVLLF ™1 53
TLMGN ™1 89
GNLGM ™1 211
LGNGTIL ™1 20
NLGMI ™1 181
FLSSLS T™M2 53
VDICF T™M2 71
CFSsV T™M2 59
GVTEF T™M2 55
TVPKS T™M2 39
TTTVP T™M2 64
PKMIAD T™M2 19
MLVNF T™M2 153
LPRML T™M2 39
KVISF EL1 85
ISFTGC EL1 45
GCATQ T™M3 117
SYSGC T™3 47
AQLFF T™M3 107
LVAMA T™3 122
NPLLY IL2 349
PLHYL IL2 110
PLLYP T™4 68
SWLGG T™4 54
GLFVA EL2 60
YTVIL TM5 50
SYGLI TM5 34
LAVVTL TM5 23
ILRIR IL3 142
LRIRS IL3 159
RKALS IL3 161
LLFMY TM6 61




LFFGP TM6 133
AYLKP TM6 54
TYIRP TM6 29
YLRPSS TM6 50
IYARP TM6 49
VALFY TM6 50
RPSSS TM6 86
LFYTI T™7 115
EVKGA C 108
GALRR C 65
AMRKL C 61

Domains are the same as in table 2.

6.2.3 GPCR remote homologies

ORs are part of a larger protein superfamily of G-Protein @auRkceptors (GPCRs). We searched
967 chicken, human and mouse non-OR GPCRs taken from [18] and [19] and fowfd2®R
CPs to appear in this dataset (figure 2). The number obdCBrrences (hits) on an OR is easily
distinguishable from other GPCRs. The number of CP hits on noGPBRs exceeds that of a
random model, from which one expects to observe at most one or twtsCOuri observation of up
to 6 CP hits for some non-OR GPCRs indicates an ancestradmedatween ORs and some non-OR
GPCRs, i.e. remote homology (see histograms S6-S9 in Addifikendl] and explanation of the
random model in the Methods section).

Figures S1 and S2 are histograms of the same kind for chioklem@use respectively.

In figures S3-S5 we study the loci of OR CPs on non-OR GPCR#$igken and mammals
respectively. Sharp peaks in mammals correspond to known ri2ifs No sharp peaks are

observed in chicken.



Figure 2. CP occurrences on human GPCRs. The number ofdCrences (hits) for each of the 391 human ORdefed by
HORDE) and, followed by 400 human non-OR GPCRsgad by [14]).

6.2.4 Locations of CPs on the OR sequence

We investigate the locations of the CPs along the 7 transsnaem (TM) domains. The resulting
histograms are compared with conservation loci of single anuits-a[21]. Locations are
determined relative to a highly curated multiple alignment ofdruand mouse ORs. The histogram
in figure 3 displays the relative coverage by CPs of eachigosilong the OR chain (see Methods
section 3.4 for a description of normalization of positions betweer). BlRghly conserved positions
of amino-acids, as deduced by [21] from mouse and dog data, ar@eaddy red coloring of the

histogram on 65 positions.



Figure 3. CP coverage of positions along the OR sequencéidPssstart from the N-terminal (N), through Trarembrane domains
1-7 (T1-T7), Intracellular loops (I11-13) and extedlalar loops (E1-E3) and end in the C-terminal.(6) known highly-conserved
positions are indicated by red.

Figure 4 shows the CP position coverage for four species.eBiglisplaying all CP positions for
these three species, all other species, assessed andestaro@el and lost CPs, are provided in
(figures S10-S15) [see Additional file 1].

Figure 4 indicates four regions which are highly populated withaldtgy all vertebrate evolution.
These regions are marked using a threshold drawn at 60% sequenceigopnlaebrafish,
displayed in figure 4B. All four regions reside in the interfaebveen the transmembrane domains
and the intracellular regions (IL1-3 and the C-terminal). €hesgions may be connected to
structural constraints in the interface that binds the G-protEigares displaying OR coverage by
position for all other species ranging from frog to human look vienjlas (figures S10, S11 [see
Additional file 1]). We observe that CPs within some regiamgehdeveloped much higher coverage
only in tetrapods. These regions are marked in figure 4D. Thettar end of the N-terminal, the
interface between extracellular loop 1 (EL1) and TM1 and TM2 anthitiéle of extracellular loop

2 (EL2). Most of the newly emerged regions are facing theeadiular side of the membrane. This
imposes structural constraints on the regions connected to odoramghbémdi might be specific to

airborne odorants.



Figure 4. CP coverage of positions along the OR sequencsefected species. CPs coverage of positions @hen@R sequence for
pufferfish (A), zebrafish (B), Frog (C) and Huma)( Thresholds mark the regions that are commall tien species (B) and new to

vertebrates (D). Positions are the same as in &igur

6.2.5 CP-space reveals internal clusters

Using biclustering, we obtain simultaneous co-occurrences af &I CPs for each species. This
provides a powerful visualization and allows the study of evolutiomands across species. Details
of the biclustering algorithm and its application are found irMie&hods section.

We perform the analysis using different sets of CPs cteized by their evolutionary ages.

First, we apply the procedure to zebrafish ORs, representest by theconserved CRS.e. CPs
shared with tetrapods (A1) or by zebrafish novel CPs (see figdioe reference). There are only

nine CPs novel to A8 (the common ancestor of zebrafish arerfigti) hence they are not used in



the clustering analysis. The results are displayed in figéesidentify an interesting pattern in this
figure. Zebrafish novel CPs form almost disjoint biclustersile OR clusters based on conserved
CPs (CPs originating high in the tree) tend to share CPs (figA)e Conserved CPs cover almost
all ORs (seven ORs did not pass the threshold of minimal CP mwspbeified in the Methods
section). Novel CPs cover only half of the ORs.

We identify ten clusters in zebrafish using ancestral (A13 &/l six using zebrafish-novel CPs.
Each of the latter six clusters matches one of the foohusters. The detailed cluster assignments
are displayed in the supplementary material [see Additidadl].

Novel CPs emerge from speciation and duplication events occaiftgrgthe split of fish from Al.
We find 10 ORs that do not have any novel CPs in zebrafish andofisin@n ancestor (A8). This
can serve as a first estimate of the number of OR®#isted in A1l. They reside in the OR clusters
indicated by red circles in Figure 5A.

Classification of zebrafish ORs into groups has been studied]bgnfl [22]. Both found eight
groups with different OR membership (four groups of [7] and onR2jf contain only one OR
each). Biclusters of novel CPs (Figure 5B) map perfectlpmoesgroups (groups and of [7]),
where some groups are further split to reveal finer detais groups and of [7] and group E of
[22] are split into two biclusters). The 10 ORs which contain nol@dRe have members only from
groups , and of [7]. For mapping between our clusters, and the groups odrid][22], see
additional files 2, 3 and 4.

Figure 5. Biclustering results of Zebrafish. Y-axis corresgse to ORs and X-axis to (A) Al (root ancestor) @Rd (B) zebrafish

novel CPs. Circled clusters in (A) have no corresfirng biclusters of novel CPs in B.



The biclustering algorithm allows us also to differentiate betwne different zebrafish clusters.
The assumption is that OR clusters which relate to recergsay might also bear functional
similarity. While some of the CPs that differentiatewmsn the OR clusters are conserved remnants
of duplication events, other CPs represent segments of@Rs¢hat might contribute to a common
functionality of the OR cluster. A table of the CPs daftealuster is provided [see Additional file 5].
Pufferfish has few novel CPs. Biclusters formed using CRsgilg to Al look similar to the ones
displayed in Figure 5A. The biclustering of pufferfish appeaifigure S16 [see Additional file 1].
Figure 6 displays biclustering results of frog. Three setSR¥ are being used, those novel to Al,
novel to the tetrapods' ancestor (A2) and novel to frog. Anc&Rsform noisy clusters, while CPs
novel to frog form almost disjoint clusters, similar to tlebdrafish biclusters. As in zebrafish, the
number of ORs covered by CPs drops with the age of the CFhé.aotle in the ToL where it first
appears). We identify nine clusters using CPs novel to frogy i@ almost perfectly to clusters
identified using either novel CPs of A1 or A2 [see Additidiial3].

Unlike zebrafish clusters, not all the A1 and A2 conserved fGf?s identifiable biclusters. This
suggests that they have been subjected to a higher mutatothaatobserved in zebrafish, which
may relate to the appearance of class Il ORs in frog [P3. clusters in figure 6c relate to the
groups and of [7], [see Additional file 4].

Chicken and lizard have too few novel A3 and A7 CPs, to condirclcisters. The novel CPs of
chicken form one big cluster, while novel CPs of lizard fomal$ disjoint clusters. Novel CPs to
Al and A2 also show difference between chicken and lizard. Wheléormer reveals a robust big
cluster, the latter show no clusters at all. This imghege number of recent duplications in chicken.
The biclustering of chicken and lizard appear in figures Sl1F [see Additional file 1].

Biclusters in mammals are displayed in figures S19-S23 [seetidwhli file 1]. Biclusters are
significant for CPs novel to A3- A6. They can be mapped to dla@sh-like) and class I
(mammals-like) ORs, and to families of the Human Olfac®eceptor Data Explorer (HORDE).
The mapping appears in Additional files 6, 7, 8, 9, 10, 111&nd



Figure 6. Biclustering results of Frog. Y-axis correspota®©Rs and X-axis to CPs novel to Al (A), to A2 @)d CPs novel to frog
(©).

6.2.6 Novel CPs and mammalian families

Figure 7 shows the correspondence between mammalian CPs ankdstification of the OR

superfamily into families, using the HORDE classificatsystem [16]. Class Il (families 1-13) ORs
contain predominantly CPs of A2. In contrast, class | (famit&, 52 and 56) ORs have equal
distribution of novel CPs from Al and A2. We also observe that yaBndlmost ceased to evolve

after A2 and families 9 and 11 stopped evolving after A3.

Figure 7. Distribution of CP age, novel to Al- A5 ancestfws each mammalian HORDE family. X-axis correspomaldamily

number. Color scale corresponds to percentage thiertotal number of CPs of each family, rangingrfi@ (white) to 1 (black).

6.3 Discussion & Conclusions

We use CPs extracted by MEX (Motif Extraction algorithm) tiadg evolutionary processes in
olfactory receptors. Such conserved CPs are known to have biologpaftance [24] and are

expected to play structural and functional roles in olfactorgpts. Having extracted such CPs



from ten species, we use evolutionary constraints to furtitoy the extracted CPs in making
sense of the complex relationships of ORs of different spagieone another.

The evolutionary perspective is obtained by applying the parsinpoingiple to a tree-of-life
accommodating the studied species. It allows us to construchcasteal phyletic pattern of the
presence or absence of CPs in internal nodes of the triegy tds construction, we show that the
number of species-specific CPs is relatively high in fish aag, fout remains fixed in terrestrial
species. The species-specific CPs in the aquatic speés Ipe related to ORs detecting water-
soluble odorants. We observe a major emergence of CPs in tbstanof tetrapods and major
losses of CPs in pufferfish and in chicken. A surprising restalhming from this mapping is that
although humans lost half of the intact mammalian ORs, théyidg 11% of the conserved CPs,
suggesting a controlled process of loss of redundant ORs. In otnds,vthe potential odorant
recognition of humans may have suffered only a minor damage byvére skminution of their OR
repertoire.

CPs that differentiate between water-dwelling species anm@éstaal species have potential
biological significance and are candidates for further bioctedratadies.

We show that some of the OR-extracted CPs exist in the ggBBf@R population, demonstrating
the ancient origin of ORs and several other GPCRs.

The fact that the OR history stretches back to fish waerhgd[7] who claimed that 85%-90% of
frog, chicken, mouse and human OR repertoires was construotaddfrplication of a single fish
OR of group , Dr30OR5.4. One or more of these 35 fish groPs are also observed in 98% of the
tetrapod ORs. This is larger than the coverage observed®mCany other fish ORs. These 35 CPs
are also almost exclusively located in the five most conserveitiopssin figure 3 (boundary
between IL1 and TM2, boundary between IL2 and TM3, middle of EL2, boundargdre IL3 and
TM6 and TM7). We point out, however, that major changes have eccumr other nodes of
evolutionary history. By studying loci of CPs we identify two oggi that show high CP coverage
starting from tetrapods: the N-terminal and the middle ofs#ednd extracellular loop. This might
imply that these regions are important for the adaptation oft®Risborne odorants.

Gene multiplication events are most naturally exhibited byetgtence of clusters of ORs. Using
the evolutionary separation into novel and conserved CPs, we aréoaldenonstrate clean OR
clusters. This is done by applying a biclustering algorithm #drioes associating CPs with ORs
within species: clean clusters emerge when novel CPs are baiptpyed. Results vary with
increasing evolutionary age of the species in question. Our teichg results of the species studied
by [7], [22] (zebrafish, frog and chicken) generally support theptqgenetic models, but provide
finer OR grouping and a cleaner selection of the responsiblestanc(where CP formation has



occurred). Finally, we are able to use the CP analysis taderalevelopmental details of OR

families of the Human Olfactory Receptor Data Explorer RDE).

6.4 Methods

6.4.1 Data

For the described study we selected a set of 4027 intact offaet@ptors (ORs) from ten vertebrate
species including pufferfishTékifugu rubripe} zebrafish Danio rerio), frog (Xenopus tropicalis
chicken Gallus gallug, lizard @Anolis carolinensis platypus Qrnithorhynchus anatingsopossum
(Monodelphis domestiga dog Canis familiarig, mouse Mus musculys and human Homo
sapiens.

All mammalian, chicken and lizard OR sequences areablailat the HORDE [16]. OR sequences
of fish and frog were taken from the study of [7]. Lizard and PlatypRs appear in [25]. The
number of ORs for each species is listed in Table 1.

967 chicken, human and mouse non-OR GPCRs were taken from [1[8B&nd

6.4.2 MEX algorithm

MEX is a motif extraction algorithm introduced by [10] as paraohethod for grammar induction
from texts and was later used on proteins [11]. Given a set ddipsptthey are represented as
different paths over a graph that consists of 20 vertices,spameing to the 'alphabet’' of 20 amino-
acids. MEX proceeds by looking for convergence of many paths oimgsstf amino-acids, and the
subsequent divergence from such strings. The latter are dlefinenotifs if both convergence and
divergence obey some statistical conditions. These conditions apsedh on context-dependent
variable-order Markov chains that are constructed out of thepd#ts. The algorithm has two
parameters, and , specifying the amount of convergence/divergence and fistist significance
given the number of paths involved in the process. More informatiobedound on the website
[26].

In the present analysis we ran MEX on the proteins of each spaparately, using the parameter
values =0.9 and =0.01. We restricted ourselves to peptides of length 5 amids-ac more and
appearing in at least 4 ORs. These peptides were mergazhmist, where duplicates and peptides
containing other peptides were removed. The resulting non-redundacritains 2717 Common
Peptides (CPs). Each of the CPs was then searched on thef @lRspecies. CPs that appear only in

the ORs of one of the studied species are defined $pdiges-specific



6.4.3 Fitting CPs to the tree of life and phylogene tic analysis

We used the tree of life web project, available at [27] to toocisthe relationships between the
species. The relations between the species is consisténtheitree of life of [15] . Dog, Mouse
and Human were put under one common ancestor according to the ifeevafd project, although
there are other possible ancestral orders based on diffeteoit genes (see also[28], [29]-[30]).
Trying other arrangements for Dog, Mouse and Human did not heeddrived conclusions. The
assessment of CP origins uses the Wagner parsimony, as ienpdehby the Phylogeny Inference
Package computer programs PHYLIP. Similar results acedditained by Dollo parsimony.

Since some CPs differ by only one amino acid from others, wediswechecked whether loss and
gain of a CP on any internal node corresponds to a mutation of a amgio-acid (interpreted as a
loss of the CP) into another amino-acid (interpreted as aajanCP). We have found that the
number of such events is negligible (1 such event in an ancesti@lon average and 7 on average
in the species, occurring mainly in chicken and lizard).

Following Parsimony estimation, each internal node A1-A8, and speties, has a list of CPs
associated with it. We identifynbvel CP% as those that exist in the current ancestor/speciedidut
not exist in previous ancestors anlkdst CP$ are defined as those that exist in the current
ancestor/species but did exist in the previous ancestor. CRfathaback to previous ancestors are

referred to as¢onserved CPs”

6.4.4 Normalizing CP positions

Each CP contains a set of positions relative to the stagach OR. Due to variable N-Terminal
length and gaps, we needed to normalize the different positiorechf@ appearing in different
ORs. We normalized the OR relative positions using ClustaBdailable at [31]). We first aligned
the five sequences used in [32] to construct a profile (replac@B267-1 that was not available in
our set with MOR257-10). Each OR was then aligned to thidgaro

6.4.5 Biclustering

Biclustering is performed on the ORs of each species, ugibgetss of CPs, each subset
corresponding to a different origin on the tree of life. Each QBpsesented by a binary vector that
signifies the existence or non-existence of each of theoBRts sequence. In order to clear noise,
we first removed all ORs having less than 5 CPs from tlevaet tree of life node. We then
removed CPs that appear in less than 5 ORs from the remaimingRs left with no CPs after the
previous removal were also removed. We used a bipartite apgcaiph partitioning algorithm of

[33]. Initially designed for documents and words, this bi-clusteriggrdhm handles sparse data



well. This algorithm produces biclusters of ORs and CPs. Wmewigd the algorithm to produce

good biclusters' images. This was achieved by applying single énkagarchical algorithm for

each produced bicluster and sorting each bicluster according toigregchical clustering, thus

handling less homogenous clusters better. This augmentation aefgibithm does not alter the

assignment of ORs and CPs to biclusters, but merely probates visualization of the biclusters.
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6.6 Supplementary Material

Supplementary Tables and figures are also fourdtjin//adios.tau.ac.il/ORP@ahd in
http://www.biomedcentral.com/1471-2148/9/91/additional/

6.6.1 GPCR remote homologies

Figure S1 The number of CP occurrencg@sts) for each of the chicken 229 intact and psgetie ORs and 281 non-
OR GPCR from [1]



Figure S2 The number of CP occurrencgsts) for each of the mouse 978 intact ORs andr@860OR GPCR from [2].

Figure S3.CP coverage of amino acid positions along chickemOR GPCR sequences. The positions are shownm up t
500 amino-acids for clarity.



Figure S4.CP coverage of amino acid positions along mouse®iR GPCR sequences. The positions are shown up to
400 amino-acids for clarity.

Figure S5.CP coverage of amino acid positions along mouse®iR GPCR sequences. The positions are shown up to
400 amino-acids for clarity.



Figure S6.Histogram of the percent of chicken non-OR GPCRa function of the number of CPs occurring in them

Figure S7.Histogram of the percent of mouse non-OR GPCRsfaaction of the number of CPs occurring in them.



Figure S8.Histogram of the percent of human non-OR GPCRsfasction of the number of CPs occurring in them.

Figure S9.Histogram of the percent of human and mouse rahdparmuted non-OR GPCRs as a function of the
number of CPs occurring in them.



6.6.2 Locations of CPs on the OR sequence

Figure S10.Coverage of ORs by CPs as a function of positadasg the OR sequence for Pufferfish (A), ZebrafB)
Frog (C), Lizard (D) and Chicken (E). Positiongtsteom the N-terminal (N), through Transmembraoendins 1-7
(T1-T7), Intracellular loops (11-13) and extracdé#luloops (E1-E3), ending with the C-terminal (C).

Figure S11.Coverage of ORs by CPs as a function of positadasg the OR sequence for Platypus (A), Opossum (B)
Dog (C), Mouse (D) and Human (E). Positions areemed using the same coordinates as in Figure S10.



Figure S12.Coverage of ORs by CPs as a function of positidasg the OR sequence faovelCPs of Pufferfish (A),
Zebrafish (B), Frog (C), Lizard (D) and Chicken (B)ositions are ordered using the same coordiatés Figure S10.

Figure S13.Coverage of ORs by CPs as a function of positédasg the OR sequence faovel CPs of Platypus (A),
Opossum (B), Dog (C), Mouse (D) and Human (E). tRoss are ordered using the same coordinates Eigiime S10



Figure S14 Coverage of ORs by CPs as a function of positedosg the OR sequence for ABstin Pufferfish (A),
Zebrafish (B), Frog (C), Lizard (D) and Chicken (Bpsitions are calculated over all ORs other tharspecific species
and ordered using the same coordinates as in F&fLoe

Figure S15.Coverage of ORs by CPs as a function of positadasg the OR sequence for ABstin Platypus (A),
Opossum (B), Dog (C), Mouse (D) and Human (E). tRwss are calculated over all ORs other than tleeifip species
and ordered using the same coordinates as in F&fife



6.6.3 CP-space reveals internal clusters

Figure S16.Biclustering results of Pufferfish. Y-axis corresgls to chicken ORs and X-axis to CPs novel togpfih.

Figure S17.Biclustering results of Chicken. Y-axis correspsal chicken ORs and X-axis to CPs novel to the MRC
of fish and tetrapods (A), tetrapods ancestor &B)jniotes ancestor (C) and CPs novel to chicken (D).



Figure S18.Biclustering results of Lizard. Y-axis corresponddizard ORs and X-axis to CPs novel to the MR&A
fish and tetrapods (A), ancestor of tetrapods (&) @Ps novel to lizard (C).

Figure S19 Biclustering results of Platypus. Y-axis corresg®to platypus ORs and X-axis to CPs novel to MREEA
fish and tetrapods (A), ancestor of tetrapods éByestor of amniotes (C) and ancestor of mammalCH3.



Figure S20.Biclustering results of Opossum. Y-axis correspotmdopossum ORs and X-axis to CPs novel to MRCA of
fish and tetrapods (A), ancestor of tetrapods §Bgestor of amniotes (C), ancestor of mammals (d)aacestor of
marsupials (E).

Figure S21.Biclustering results of Dog. Y-axis correspondsitgg ORs and X-axis to CPs novel to MRCA of fisk an
tetrapods (A), ancestor of tetrapods (B), ancesftamniotes (C), ancestor of mammals (D), ancedtararsupials (E)
and ancestor of eutherians (F).



Figure S22.Biclustering results of Mouse Y-axis correspormaibuse ORs and X-axis to CPs novel to MRCA of fish
and tetrapods (A), ancestor of tetrapods (B), doce$ amniotes (C), ancestor of mammals (D), atocesf marsupials
(E) and CPs novel to mouse (F).

Figure S23.Biclustering results of Human. Y-axis correspotwleuman ORs and X-axis to CPs novel to MRCA di fis
and tetrapods (A), ancestor of tetrapods (B), doce$ amniotes (C), ancestor of mammals (D) arzkator of
marsupials (E).






Chapter 7

Analysis of aminoacyl tRNA synthetases using Common Peptides °

7.1 Introduction

The aminoacyl-tRNA synthetases (aaRSs) are key participaitis translation mechanism of the
cell, catalyzing the esterification of specific aminadaand their corresponding tRNAs. They have
drawn attention in recent years due to their crucial funciatensive study [1, 2, 3, 4] has been
done on their structure in order to understand the exact mechayistnich they operate. Their key
role in the heart of the translation process and their caoneotthe genetic code make them natural
candidates for evolutionary studies, aiming to pinpoint thetveanglation has started in the
hypothesized primitive cell and the way it evolved to theemirstage [5, 6]. The aaRS fall into two
classes based on the topology of their ATP binding domains.

We study the aaRS families by using the Common Peptides (@&thodology, which has been
successfully employed for olfactory receptors [7]. CPsatacted by applying the Motif

Extraction algorithm (MEX) [8, 9] to each of the aaRSifaas. Their lists are then combined to
provide a unified CP list, which forms our system of refereRepresenting aaRS sequences in this
CP space, we compare different aaRS families and trkaxtt®onary relations between them. We
put special emphasis on uncovering relationships between mitochandrihe three kingdoms of
life. We find novel class-determining signature CPs, possiétring functional roles. We indicate
the most ancient CPs, based on the reconstruction of theriRs tree of life (ToL) and show that
abundant CPs have functional importance by showing that mostofat@upy known catalytic

and binding sites on PDB, while some others have undetermingddhality.

In essence, we provide a novel perspective, regarding aeiBes through the use of CPs, and

point out novel CPs that may reside on functional locations.

7.2 Methods

7.2.1 Data

We analyze 5406 sequences belonging to 22 different enzyméefaofiaminoacyl tRNA

synthetases corresponding to Enzyme Commision (EC) number 6flotnxEnzyme and UniProt

° Based on the pap@mnalysis of aminoacyl tRNA synthetases using ConfreptidesAssaf Gottlieb, Milana Frenkel-
Morgenstern, Mark Safro, David Horn, in prepanatio



databases. Table 1 lists the different aaRSs and numbegaénces in each. 6.1.1.x family,
including synthetases of the 20 common amino acids (AA), alomgtletuncommon pyrrolysine
and O-phosphoseryl-tRNA ligase (SepRS).

biotin-[acetyl-CoA carboxylase] synthetase (birA) sequence® w30 studied because of their

similarity to aaRSs. 1664 birA sequences were downloadedUiGRrot.

7.2.2 Method of Common Peptides

The data downloaded from Enzyme database contains some alemiitaldsequences, belonging
either to very close species or different strains oktrae species. In order not to identify Common
Peptides (CPs) that are common only in the sense thagxistymainly on these near-identical
sequences, we used single linkage clustering with a thresh®@6 sequence identity to filter these
groups, keeping only their central representatives (definednrs tef average closeness to other
cluster members). The remaining sequences thus representredumaant set’ of the Enzyme
database within EC 6.1.1.

We followed a procedure similar to [7]. This procedure startapplying the unsupervised Motif
EXtraction algorithm (MEX) [8], [10] to each of the 22 nomluedant sets of enzyme sequences,
thus leading t0.22 separate sets of Common Peptides (CRs)gthf 5 amino-acids or more. The
separate lists of CPs are then unified, removing redundancyttfiemnified list by removing CPs
containing smaller CPs. The unified list contains 10612 CPs. ¥iadllll0612 CPs are searched on
all aaRS sequences (including aaRSs where the CP was naatextoy MEX). We thus end up with

a CP space in which all the sequences are represented.

7.2.3 Assignment of proteins to kingdoms

Assignment of species to the different kingdoms of lifel{aea, bacteria and eukarya), including
separation of mitochondrial sequences into a separate grougpnasiutomatically using Kyoto
Encyclopedia of Genes and Genomes (KEGG) Organisms [11-13], &&gnomes [14] and

Ciccarelli tree of life [15] followed by manual curation.

Table 24.Properties of aaRS, ordered by class. Displayeshamber of sequences used in the MEX analysisbauof CPs derived
from each aaRS category, the total number of GPftutn the unified list of 10612 CPs and the nundfeCPs found only within a

given family.

# of # of # of

# of
EC Name Class MEX observed specific
sequences
CPs CPs CPs




6.1.1.7  Tyrosyl tRNA synthetas I 261 40C 75¢€ 23¢
6.1.1.2 Tryptophanyl tRNA ! 121 163 323 102
synthetase
6.1.1.4 Leucyl tRNA synthetase | 344 1031 1730 591
6.1.1.5 Isoleucyl tRNA syntheta: I 271 871 160¢ 56¢
6.1.1.¢ Valyl tRNA synthetas I 211 641 129: 37¢
6.1.1.1( Methionyl tRNA synthetas I 24¢ 634 1121 38¢€
6.1.1.1¢ Cysteinyl tRNA syntheta I 362 50& 99¢ 301
6.1.1.17 Glutaminyl tRNA synthetase | 373 645 1237 407
6.1.1.18 Glutamyl tRNA synthetase | 37 96 178 50
6.1.1.19 Arginyl tRNA synthetase | 327 677 1275 421
6.1.1.3 Threonyl tRNA synthetase Il 279 671 1128 431
6.1.1.¢ Lysyl tRNA synthetas ] 192 34C 651 17E
6.1.1.% Alanyl tRNA synthetas ] 193 50€ 101¢ 314
6.1.1.1. Seryl tRNA syntheta: ] 34t 48¢ 874 264
6.1.1.1: Aspartatyl tRNA syntheta I 294 58€ 992 341
6.1.1.14 Glycyl tRNA synthetase Il 226 432 773 265
6.1.1.15 Prolyl tRNA synthetase Il 369 792 1313 475
6.1.1.20 Phenylalanyl tRNA synthetase ] 495 682 1576 418
6.1.1.21 Histidyl tRNA synthetase Il 312 393 838 246
6.1.1.2; Asparaginyl tRNA syntttase ] 124 213 402 13C
611np O nosphoser-RNA ! 17 31 87 20
synthetase
6.1.1.26  Pyrrolysyl tRNA synthetase 1l 5 16 20 11

7.2.4 Fitting CPs to the tree of life and phylogene tic analysis

We used the tree of life (ToL) constructed by [15] to folloglationships between species. Being

interested in the upper nodes of the tree, species were dhtapihe ToL also by genus name when
the specific species was not found in [15].This left us @83 sequences that could be mapped.

The assessment of CP origins uses the Wagner parsimamplasented by the Phylogeny

Inference Package computer programs PHYLIP.



7.3 Results

7.3.1 Frequent CPs

CPs that occur on multiple sequences reside on conservedgeghich are naturally assumed to
play structural or functional role. Table 2 displays the topcurring CPs. All of them occur
exclusively in the more conserved class | aminoacyl-tRMAthetases. The first CP in Table 2,
KMSKS, is one of two well-known signature sequence motifsadlto class | aminoacyl-tRNA
synthetases that catalyze the amino acid activationAliEh[16, 17]. We note that the second well-
known signature, HIGH, is not included because our MEX applicataelimited to motifs of

length 5 or more. Some CPs, however, contain this motif artated form of it; the most abundant,
residing in the top 30 frequent CPs are LHMGH and HIGHA, goayion 249 (4.6%) and 242
(4.5%) sequences respectively.

It is interesting to note that most of the frequent CPsad@ccur at all (or occur in negligible
amounts) in Eukaryotes, although existing in their mitochondriah&udiscussion of the
differences in CP representation in different kingdoms is fautige section "Evolutionary Aspects
of CPs".

Only one full sequence does not have any CP hits (5 other sequagments ranging between 10-
49 AA long also do not have hits). This is a type-2 serylARNMnthetase dil. thermophila (strain
DSM 6194 / PT)a rare form unique to methanogen archaea [5]. The othetl@nogen archaea

species containing this rare form have 2-7 CP hits on them.

Table 25.Top 10 most frequent CPs. Each row displays tmelmu of sequences the CP occurs in (percent of all
sequences), # of aaRSs it appears in, and the mwhbecurrences in each kingdom +mitochondria¢est of all the

sequences belonging to this kingdom)

sequence ] ) )
# of bacteria eukarya archaea mitochondria
CP occurrences
aaRSs (percentage) (percentage) (percentage) (percentage)
(percentage)
KMSKS 1364 (25%) 9 1196 (26.4%) 24 (14.5%) 102 (17.1%) 42 (39.6%)
KSLGN 502 (9%) 9 440 (9.7%) 5 (3.0%) 40 (6.7%) 17 (16.0%)
ISROQR 345 (6%) 3 296 (6.5%) 0 (0.0%) 36 (6.0%) 13 (12.3%)
GRPGWH 333 (6%) 1 297 (6.5%) 6 (3.6%) 24 (4.0%) 6 (5.7%)
PSPTG 329 (6%) 2 319 (7.0%) 3(1.8%) 0 (0.0%) 7 (6.6%)
FPHHE 327 (6%) 1 294 (6.5%) 0 (0.0%) 28 (4.7%) 5 (4.7%)
PYANG 318 (6%) 2 295 (6.5%) 0 (0.0%) 18 (3.0%) 5 (4.7%)
RQRYWG 310 (6%) 2 283 (6.2%) 0 (0.0%) 22 (3.7%) 5 (4.7%)




SKSKG 299 (6%) 8 266 (5.9%) 1 (0.6%) 32 (5.4%) 0 (0.0%)
PYPSG 294 (5%) 2 284 (6.3%) 0 (0.0%) 4 (0.7%) 6 (5.7%)

7.3.2 CPs as Class Signatures

CPs are generally not specific to a particular aaRSsdme appear dominantly in class | or class Il
synthetases (see Table 1 for classification of the aaRSs).

The number of CPs in each class is summarized in the Magram in figure 1.

Figure 1. Relative abundance of CPs in class | and claggithetases. 11 CPs are specific to pyrrolysine RN
synthetase and thus do not belong to any class.

Table 3 lists CPs that display preference for one ofldsses and cover more than half of the
different aaRSs. Shown are the number of different enzymea #peecific CP appears on, and the
number of different aaRSs. Variations of the known class | siggg(HIGH and KMSKS) were
omitted.

These CPs may be used to aid classification task (he&{®thermore, these CPs may signify a
functional or structural constrained region, related to theifspéype of operation of each class
enzymes. While class | has two known signatures, class/é hone. In this respect, the CPs

specific to class Il appearing in Table 3, may be regarded\as signatures.

Table 26 Novel CP class signatures for Aminoacyl-tRNA $gtasesGVERL may be part of more general class I
motifs [3, 18].

#of class| #ofclass| # of class # of class Il

CP
aaRSs occurrences Il aaRSs occurrences
TADEI 8 47 1 1
ALADE 8 37 1 2

KSLGN 7 500 2 2




SKSKG 7 296 1 3
SKGNV 7 178 1 4
DVIAR 7 73 0 0
DVVAR 7 60 1 2
ADAIR 7 38 1 1
GLDLL 7 35 1 1
GVERL 0 0 8 92
DLVEE 1 2 7 67
GLDRI 1 1 7 43
AEAVL 1 2 7 24
ERISA 0 0 7 24
LRLAE 0 0 6 38
AAGVR 2 2 6 47

7.3.3 CPs as Features

CPs span a space in which the aaRS sequences aremgatebethis space, we calculate Pearson
correlations between different aaRSs. A heat map of twselations is presented in figure 2,

where the aaRSs are grouped according to their classes.

Figure 2. Heat map of Pearson cross-correlations of diffea@aRSs according to their shared CPs. Self etivak

were left out for the purpose of clearer preseoitati



While the absolute values of the correlations are ssuihe correlations stand out above the
background. Class | aaRSs are generally very close tarmibker, except for GluRS, GInRS and
ArgRS. In class Il correlations are much smaller, buthose between LysRS and AspRS and, to
some extent, AspRS and AsnRS. Interestingly, SepRS an&Ry&v above background
correlation to GlyRS.

Interesting relations emerge when the correlations aralatdd for each kingdom separately
(mitochondria taken as a separate kingdom). Bacteria arendoti@nd the correlations between
aaRSs calculated on them show wide resemblance to figure 2.

aaRsS correlations calculated among eukaryotes show only #RR&@airs that stand out above the
background . The first pair is GIuRs and GInRS (see [19] fate@ discussion). The second pair is
ProRS and GIuRS and the third observed pair contains ProRSI@R8 that belong to different
classes. These pairs of high-correlation do not exhibit lselavior in bacteria. Furthermore, the
correlation values are much higher than observed in other kirgg(B1i for GluRs and GInRS and
0.49 for ProRS and GIuRS). The high correlation of eukaryotR8rand GIuRS matches the
observation made by [20], pointing out that the genes of ProRSlaR$&@reorganized differently
in the three kingdoms of the tree of lifle.bacteria and archaea, distinct genes encode the two
proteinswhile in several organisms from the eukaryotic phylum of@matemetazoans, the two
polypeptides are carried by a single polypeptitn to form a bifunctional protein, postulated to
result from a gene fusion event.

Correlations between aaRSs within archaea show claselatmns that are similar to bacteria but
for two exceptions; TryRS only correlates with TyrRS, andR&has no correlations with other
class | members (MetRS is indeed mentioned as having lewe of similarity in [21]).

Last, calculating correlations between aaRSs using oniyitoehondria exhibits a slightly different
pattern, in which class | aaRSs do not correlate with $yaRd class Il PheRS correlates with
AlaRS, a correlation that does not appear when calculatttier kingdoms. The correlation heat-

maps for each kingdom are found in the supplementary figure¢.S1-S

7.3.4 Evolutionary Aspects of CPs

It has been demonstrated by [7] that reconstructing CPs ontdagehgtic tree can track interesting
evolutionary events. Following the same philosophy, we first @eathe assignment to the
different kingdoms of life, separating mitochondria from EukagoTable 4 displays the relative

abundance of CPs in each kingdom.

Table 27. Statistics of each kingdom of life, separating wiitondria from the eukaryotes.



) # of Specific CPs out of all
Kingdom Percentage of CPs

proteins observed in kingdom
bacteria 4538 94.7% 62.8%
eukarya 166 13.1% 3.7%
archaea 596 28.9% 13.5%
Mitochondria 106 11.1% 1.3%

According to Ciccarelli's Tree of Life (ToL) [15], itar$t few branches define various archaea
genuses, and only then the tree splits into bacteria andyaulkeccordingly, we define distinct sets
of CPs appearing in all three kingdoms, in the joint node d@kba and Eukaryotes and in each of
the 3 kingdoms exclusively, and analyze the distribution of sach set among the different aaRSs.

This is displayed in Figure 3, enabling us to study the histbaaRS formation.

Figure 3. Distribution of different aaRS families accordittgthe CP groups appearing in all 3 kingdoms, amly

bacteria and eukarya, and in each kingdom excllysive

Figure 3 shows that for the 20 common amino acids, most @Riseoriginate only in bacteria,
while for SepRS and PyIRS, most originate in archaea. CisR$exception, having many of its
CPs belonging to all 3 kingdoms. This is consistent with [5] pdiated out that CysRS provides
considerable evidence of interdomain horizontal gene transfécysarly involving archaea. Other
interesting observations emerge, easily viewed when lasigecific CPs are excluded from figure

3 (see supplementary figure S5). It becomes then obvious tiREVAIaRS, GluRs and GInRs, are



relatively more conserved in bacteria and eukarya thah 8ikingdoms. These observations are in
accordance with the observations made by [5].

Using Ciccarelli's Tree of Life (ToL) [15], we reconstrtizé CPs on the tree using parsimony (see
methods). Of particular interest are the CPs that occhekign the ToL, i.e. in branches that
include archaea. 15 CPs that occur highest in the treeddes including archaeal species) and also
appear in more than half of the species in the trebsted in table 6. All of them belong
predominantly to class I. 6 of them are also in the taged CPs list (table 2). These CPs appear
highest in the tree, hence they are highly conserved. Beiagatlusive to one of the classes (with
few exceptions) suggests that they are good candidates foofuadategions and should be
subjected to further exploration. Four CPS from this list (CEBEEVETP, GGRYD and the known
class | signature KMSKS) also appear on sequences hagolged structures in PDB, and will be
discussed in the next section. Only two out of the four opdatewn functional regions (GGRYD

overlaps atp-binding region and KMSKS ligand binding region).

Table 28. CPs occurring in the top nodes of the ToL (inclgdimchaeal sequences) and covering more than ik o

ToL species. Bold-faced CPs are specific instantiatof class | signature motifs.

# of #ofclass| #of #ofclassll
CcP class | occurrences class Il occurrences
aaRSs aaRSs
DWCISRQ 3 256 0 0
DVLDTW 1 165 0 0
GRPGWH 1 333 0 0
TTTPWT 1 255 0 0
CGGTH 1 1 2 140
EVETP 0 0 5 205
FPHHE 1 327 0 0
GGRYD 0 0 1 253
ISRQR 3 345 0 0
KMSKS 8 1362 1 2
KSLGN 7 500 2 2
LHIGH 10 216 1 2
SKSKG 7 296 1 3
TTRPE 3 192 0 0
WTTTP 1 259 0 0




7.3.5 Mitochondria

Mitochondria constitute a special case, residing in Eukargetis, yet bearing similarity to bacteria
[22]. The Venn diagram in figure 4 displays the percentage oftk& appear in mitochondrial
sequences according to the way they are shared by aaR8&Exjfrem other kingdoms.
Furthermore, the heat map in figure 4 shows the correlatieaah of the kingdoms to each other,
with mitochondria and bacteria showing a high similarity. Tlbeeness to bacteria, as postulated by

[23] is clearly observed.

A B

Bacteria

Eukarya Archaea

Figure 4. (A) Venn diagram of the percentage of CPs presemitochondrial sequences shared with other kimgsl
(B) Heat map of correlation between different kinggs + mitochondria. Self correlations were left fautthe purpose

of clearer presentation.

15 CPs are found to be specific to Mitochondria. They are list&ble 5. It is interesting to note
that the CP "QQQQQ" that appears only in mitochondria, appeasoleucyl, leucyl and histidil
tRNA synthetases. This CP usually appears more than onszquance and typically it is part of a
longer stretch of glutamines. This may point out that theseipsotontain intrinsically unstructured
regions (IURs) [24 , 25].

Table 29. CPs specific to the Mitochondria

CP # of enzymes the CP appears in
TTPIFYVN 9




SLESGH

VHSHW

ELADALGGLLNRCTA

QWGNYFLH

STWELLD

KIQQAA

CVRQTNGFVQRHAPWKL

ITNCGSGF

YKALEAVS

GTLLQPV

KLPEFNR

AVQHFW

QQQQQ

VLQWL

BB BB AR A g O O N N

7.3.6 Biological role

We looked for occurrences of our CPs on resolved structuresiie PDB database. We restricted
ourselves to CPs that cover more than half of the segaieheg least one aaRS family, henceforth
termedfrequent CB. A large number of the frequent CPs occupies binding bagesan be read-off

these structures. Their list is presented in Table 7. 7&#edfequent CPs appearing in table 7

overlap known catalytic and binding regions.

Table 30. Occurrence of frequent CPs in aaRSs that on segsevith a PDB entry. Most of them occur at strategi

sites, of high relevance to the biological functifiMSKS is a known class | motif.

CP Uniprot ID PDB ID remarks
AADIL SYW_BACST | 1I6K ligand binding domain
CGGTH SYA_AQUAE 1YFR -
DDTNP | SYQ DEIRA | 1EUQ tRNA binding area
DFQAR SYS_AQUAE | 2DQ3 ligand-binding motif
DPRMPT | SYQ_DEIRA 1EUQ -
DTGMG SYA_AQUAE 1YFR ATP binding domain
EISSCS SYS_AQUAE | 2DQ3 ligand-binding motif
EVETP SYK1_ECOLI | 1BBU -
FEMLGN | SYA_AQUAE 1YFR ATP binding domain
FIGKD SYM_PYRAB | 1F4L ligand-binding motif
FQARR SYS_AQUAE | 2DQ3 ligand-binding motif




FRNEG SYK1_ECOLI | 1BBU 262R-catalytic residue, ligand binding region
GDYFK SYA_AQUAE | 1YFR ligand-binding region
GEIIGGS | SYN_PYRHO | 1X54 ATP and metal binding region
GFGLG SYN_PYRHO | 1X54 ligand-binding motif

GGGRY | SYH_THEAC | 1KMN ATP-binding region

GGRYD SYH_THEAC 1KMN ATP-binding region
GGSQRE | SYN_PYRHO | 1X54 ATP and metal binding region
GIGIDR SYK1_ECOLI | 1BBU 480R-catalytic residue, ligand binding region
GMGLE SYA_AQUAE 1YFR ATP-binding domain

GPCGP SYA_AQUAE | 1YFR metal binding domain
GRGYV SYA_AQUAE 1YFR -
GVIHW | SYQ DEIRA | 1EUQ tRNA binding area

HHTFF SYA_AQUAE 1YFR ATP-binding domain

HNPEF SYK1_ECOLI | 1BBU ligand binding region

KAFYM SYN_PYRHO | 1X54 ligand-binding motif

KLSKR SYE1l_THEMA | 205R metal-binding region

KMSKS SYW_BACST | 1lI6K motif of class I: ligand binding domain
LDLRR SYD_SULTO 1IWYD -
LNGSG SYS_AQUAE | 2DQ3 ligand-binding motif

LRAKI SYQ DEIRA | 1EUQ tRNA binding area

LRFDF SYA_AQUAE 1YFR -
LRIEDT SYE1 THEMA | 205R -
MGCYG | SYP_ENTFA 2J3L ligand-binding motif
NGSGLA | SYS_AQUAE | 2DQ3 ligand-binding motif

PPHGG SYD_PYRKO | 1B8A ligand-binding region

PSPTG SYE1 THEMA | 205R ATP-binding region

PTAEV SYS_AQUAE | 2DQ3 ligand-binding motif

PTHEE SYP_ENTFA 2J3L ligand-binding motif

PYANG SYM_PYRAB | 1F4L ligand-binding motif

QLPKF SYS_AQUAE | 2DQ3 -
REISS SYS_AQUAE | 2DQ3 ligand-binding motif

RFAPSP | SYE1L THEMA | 205R ATP-binding region

RIEDTD SYE1_THEMA | 205R -
SFGDY SYA_AQUAE | 1YFR ligand-binding region

SKRKL SYQ_DEIRA 1EUQ catalytic region

TAEVP SYS_AQUAE | 2DQ3 ligand-binding motif

TLNGS SYS_AQUAE | 2DQ3 ligand-binding motif

TRFPP SYQ_DEIRA 1EUQ catalytic region

TYGFP SYA_AQUAE 1YFR -
VHTLN SYS_AQUAE | 2DQ3 ligand-binding motif




WDDPR | SYQ DEIRA | 1EUQ -
YDRLF | SYQ DEIRA | 1EUQ -

7.3.7 biotin-[acetyl-CoA carboxylase] synthetase (b irA) and aaRSs

Biotin-[acetyl-CoA carboxylase] synthetase (birA) is a bifumadil protein, acting as biotin-protein
synthetase and binding to DNA to regulate its own transcriff@&h.demonstrates structural
similarity between its active sites and class Il aagtBough no sequence similarity exists. It is thus
of interest to find out whether certain CPs are common tq binvealing local similarities that may
be related to the structural similarity in their bindingsi

In order to select dominant CPs, mutual to aaRSs and birfirstperformed the same procedure
described in the method of common peptides section for bgdesees, i.e. we extracted a new set
of 1630 non-redundant birA CPs. We next chose only CPs that apgedhiaaRS and birA lists,
either by exact match or by inclusion, where we chosentiieded CP (i.e. birA CPs could be part
of a larger aaRS CP and vice-versa). This has leadigbof 28 CPs that appear in both lists (either
exactly or being part of a larger CP in one of the twis)liy requiring appearance in a minimum
of 20 sequences in both aaRSs and birA, we filtered out fBay i3ted in table 8. The most
prominent CP is GILIE (appearing in birA also as GILVE oL T). It covers more than a hundred
sequences from both aaRSs and birA, appears dominantly sniclasaRSs. According to PDB it
resides on a catalytic site in birA and appears in clseity (2 residues apart) of a ligand binding
AC2 region in ThrRS (PDB IDs 1bia [27] for birA and 1qf6 [28] ThrRS).

Table 31. frequent CPs common to aaRSs and birA. Alternativésackets marks one-mutation far CPs that where

selected on birA but not in aaRSs.

CP # of aaRSs # of birA # of class | # of class Il

(alternatives) | Structural properties | occurrences | occurrences | occurrence | occurrences




s
GILIE Catalytic site in birA,
(GILVE, AC2 with lignad
GILTE) residue in ThrRS 2 198 2 113
GALRL
(GALLL) -helix in AspRS 1 32 0 42
GEALG Helix-turn-Helix in
(GETLG) birA 4 22 1 31
LRAAL -helix in birA 13 86 43 7

7.4 Discussion

In this paper, we employ the Common Peptides (CPs) methodol@galyze aminoacyl tRNA
synthetases (aaRSs).

The CPs allow us to discover novel class | and clasRiSaaignatures, allowing for further
research examining the role of these signatures in the darmtithe two different aaRS classes.
Using the CPs as feature space in which aaRSs are expnassare able to identify correlations
between the aaRSs. These correlations, calculated fagrsmegibelonging to species from a single
kingdom (e.g. bacteria, archaea, eukaryotes and mitochondria) dé¥erences in the aaRS
correlations between different kingdoms.

Using [15] tree of life (ToL), we are able to allocate @fes to different branches using parsimony.
This reveals which CPs have older origins and thus amadlsé conserved ones across kingdoms,
suggesting a functional or structural role for these "anc{@Rs. Focusing on mitochondria, we are
able to show that mitochondria and bacteria are undoubtedly clas#r to each other than
mitochondria to other kingdoms. We also identify mitochondria-fipeCPs.

Next we assess the biological significance of frequemttyioing CPs by checking whether they
overlap known binding and catalytic regions for sequences havin@@afixture. We show that
the majority (80%) of the frequently occurring CPs overlaghgegions (p_value>0.023,
corresponding to FDR>=0.05)

Last we find CPs common to both aaRSs and biotin-[acetyl-€oBoxylase] synthetase (birA)
which have a structural catalytic region resemblanceoatth no sequence similarity is present. We
identify four such CPs that are candidates for analysisthad verify whether they constitute a
sequential region that allows for the structural simyarit

In essence, using CPs to analyze aaRSs provides a novelfpoew @n aaRSs relations, evolution

and similarity to other proteins.
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7.6 Supplementary Material

Supplementary Tables and figures are also fourdtjin//adios.tau.ac.il/aaRSCP/

7.6.1 CPs as features
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Figure S1.Pearson cross-correlations of different aaRSsrdowpto their shared CPs. Only correlations withafue
<0.01 are shown in red. Self correlations weredaftfor the purpose of clearer presentation.
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Figure S2. Heat map of Pearson cross-correlations of diffee&RSs according to their shared CPs in Bact8ed.
correlations were left out for the purpose of aegresentation.
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Figure S3.Heat map of Pearson cross-correlations of diffeeaiRSs according to their shared CPs in Eukargi. S
correlations were left out for the purpose of cegresentation.
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Figure S4.Heat map of Pearson cross-correlations of diffeeeiRSs according to their shared CPs in Archaelé. S
correlations were left out for the purpose of aegresentation.
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Figure S5.Heat map of Pearson cross-correlations of diftee@iRSs according to their shared CPs in Mitochiandr
Self correlations were left out for the purposelefirer presentation.
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7.6.2 Evolutionary Aspects of CPs

Figure S6. Distribution of different aaRS according to thesCippearing in all 3 kingdoms together (All), incBaia
and Eukarya together (excluding Archaea) and iraBtg&and Archaea kingdoms exclusively.






Chapter 8

Summary

This thesis presents methods and algorithms for unsupervigadtmxt of structures in biological
data sets. It is divided into two distinct parts.
The first part introduces a novel unsupervised feature s@laagorithm, which is later on
developed into a complete framework, offering users a welidoektracting features from various
data sets.
The second part introduces the concept of Common Peptides apglitation to vertebrate
olfactory receptors and to aminoacyl tRNA synthetases.
In essence, both parts deal with unsupervised extracti@bestint features from very different
types of data. However, since this task is complex in natmeeneeds to match and tailor different
solutions for different data types. In this thesis we have stsmlutions that perform best for two
commonly used biological data types — gene and microRNA expremsays and protein
sequences.
Since each chapter contains its own summary, we bring heeegammaral insights gained from the
development of methods described in this thesis:
1. No one size fits alfolution.
Each data type needs inspection and analysis in ordethe tiest solution.
Furthermore, in many cases an array of processing techragdesvailability of tools that
can be tailored together are the path by which intereptittgrns emerge from the data.
2. In many cases, the data dictates the solution.
As has been emphasized in the unsupervised motto of this thesiest way to let hidden
patterns in the data expose themselves is to analyzatdaatording to its internal structure
instead of fitting predefined models to it.
3. Unsupervised extraction is a relatively uncharted land but sheugien more emphasis in
the future.
As supervised extraction of features is gaining much atteaind effort, one has to realize
that current inflation in biological data gives rise to proiden which neither the question
nor the expected answer are pre-defined. In such scenamggoervised analysis of the data
may serve as a first step to understand the questiansidlyabe asked and hopefully

answered using the given data.



In conclusion, this thesis presents methods that attempt tarésephe wheat from the chaff" in
biological data using unsupervised approach. These methods eergrhdh repertoire of
unsupervised data analysis and may benefit the study of colriplegical systems that many

researchers are attempting to decipher.
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